Ahmed, M., Waraich, E. A., Hafeez, M. B., Zulfiqar, U., Ahmad, Z., Iqbal, M. A., ... & El Sabagh, A. (2023). Changing climate scenario: perspectives of Camelina sativa as low-input biofuel and oilseed crop. Global Agricultural Production: Resilience to Climate Change, 197-236. https://doi.org/10.1007/978-3-031-14973-3_7.
Afzal, I., Javed, T., Amirkhani, M., & Taylor, A.G. (2020). Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture, 10 (4), 526. [https://doi.org/10.3390/agriculture10040526](https://doi.org/10.3390/agriculture10040526)
Bakhshi, B., Rostami-Ahmadvandi, H., & Fanaei, H.R, 2021. Camelina, an adaptable oilseed crop for the warm and dried regions of Iran. Central Asian Journal of Plant Science Innovation, 1: 39-45.
Darlington, W. A. & Quastel, J. H. (1953). Absorption of sugars from isolated surviving intestine. Archives of Biochemistry and Biophysics, 43(1), 194–207. doi:10.1016/0003-9861(53)90099-X
Cao, Z., Zhang, Q., Wang, H., & Li, J. (2019). Seed coating enhances seed germination and seedling establishment in small-seeded species under stress conditions. Field Crops Research, 242, 1-10. https://doi.org/10.1016/j.fcr.2019.02.015
Beltrão, N. E. M., & Vieira, D. J. (Eds.). (2001). O agronegócio do gergelim no Brasil (348 p.). Brasília, DF, Brazil: Embrapa Informação Tecnológica. ISBN 85-7383-115-4.
Čanak, P., Zanetti, F., Jovičić, D., Vujošević, B., Miladinov, Z., Stanisavljević, D., Mirosavljević, M., Alberghini, B., Facciolla, E., & Marjanović-Jeromela, A. (2022). Camelina germination under osmotic stress − Trend lines, time-courses and critical points. Industrial Crops and Products, 181, 114761.
https://doi.org/10.1016/j.indcrop.2022.114761
Dizaj, K. A. (2010). Seed coating of safflower (Carthamus tinctorius L.) in order to delay germination. African Journal of Plant Science, 4, 267–269
Ellis, R. H., & Roberts, E. H. (1980). Seed production (pp. 605–635). London: Butterworths.
Heydarian, Z., Yu, M., Gruber, M., Coutu, C., Robinson, S. J., & Hegedus, D. D. (2018). Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Scientific Reports, 8(1), 9804. https://doi.org/10.1038/s41598 018 28204 4
ISTA, 2022. International Rules for Seed Testing. International Seed Testing Association, Wallisellen.
ISTA (International Rules for Seed Testing). 2021. Chapter 9: i–9-12 (20). http://doi.org/10.15258/istarules.09.
Joy, E. J. M., Stein, A. J., Young, S. D., Ander, E. L., Watts, M. J., & Broadley, M. R. (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 389(1–2), 1–24. https://doi.org/10.1007/s11104-015-2430-8
Kameswara Rao, N., Dulloo, M. E., & Engels, J. M. M. (2017). A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Resources and Crop Evolution, 64(5), 1061–1074. https://doi.org/10.1007/s10722-016-0425-9
Kim, S. Y., Ha, J. S., Kim, P. J., Das, S., Gutierreze Suson, J., & Kim, G. W. (2022). A new approach for improving the nutritional quality of soybean (Glycine max L.) with iron slag coating. Agronomy, 12(12), 3126. https://doi.org/10.3390/agronomy12123126
Ovalesha, M. A., Yadav, B., & Rai, P. K. (2017). Effects of polymer seed coating and seed treatment on plant growth, seed yield and quality of cowpea (Vigna unguiculata). Journal of Pharmacognosy and Phytochemistry, 6(4), 106–109
Melo, B. A., Almeida, F. de A. C., Gomes, J. P., da Silva, W. P., Moreira, I. dos S., dos Santos, Y. M. G., Lisboa, J. F., da Silva, P. B., Silva, S. do N., & Primo, D. M. de B. (2019). Physiological response of colza (Brassica napus L.) seeds coated and treated with alternative materials. African Journal of Agricultural Research, 14, 943–948. https://doi.org/10.5897/AJAR2019.14044
Morales, D., Potlakayala, S., Soliman, M., Daramola, J., Weeden, H., Jones, A., Kovak, E., Lowry, E., Patel, P., Puthiyaparambil, J., Goldman, S., & Rudrabhatla, S. (2017). Effect of biochemical and physiological response to salt stress in Camelina sativa. Communications in Soil Science and Plant Analysis, 48(7), 716–729. https://doi.org/10.1080/00103624.2016.1254237
Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 397–409. https://doi.org/10.4067/S0718 95162015005000036
Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P., & Ercisli, S. (2022). Effect of zinc oxide nanoparticles (ZnO-NPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. Journal of Nanomaterials, 2022, Article ID 1892759, 1–15. https://doi.org/10.1155/2022/1892759
Srivastava, A. K., Suresh Kumar, J., & Suprasanna, P. (2021). Seed ‘primeomics’: plants memorize their germination under stress. Biological Reviews, 96(5), 1723–1743. https://doi.org/10.1111/brv.12722
Steppuhn, H., Falk, K. C., & Zhou, R. (2010). Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Canadian Journal of Soil Science, 90(1), 151–164. https://doi.org/10.4141/CJSS09046
Suganya, A., Saravanan, A., & Manivannan, N. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis, 51(15), 2001–2021. https://doi.org/10.1080/00103624.2020.1820030
Verma, O., & Verma, R. S. (2015). Effect of seed coating material and storage containers on germination and seedling vigour of soybean (Glycine max L.). SAARC Journal of Agriculture, 12(2), 16–24. https://doi.org/10.3329/sja.v12i2.21913
Yohannes, G., Kidane, L., Abraha, B., & Beyene, T. (2020). Effect of salt stresses on seed germination and early seedling growth of Camelina sativa L. Momona Ethiopian Journal of Science, 12(1), 1–19. https://doi.org/10.4314/mejs.v12i1.1
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
Jensen, E. S., Hauggaard Nielsen, H., & Ambus, P. (2006). The effect of seed size on seedling establishment and growth under different environmental conditions. Field Crops Research, 96(1), 53–61. https://doi.org/10.1016/j.fcr.2005.10.003
Liu, H., Wang, Z., Li, X., Zhao, C., & Liu, S. (2011). Effects of seed size and planting depth on seedling growth and yield in wheat. Field Crops Research, 121(1), 106–112. https://doi.org/10.1016/j.fcr.2010.11.004
Gorim, L., & Asch, F. (2017). Seed coating increases seed moisture uptake and restricts embryonic oxygen availability in germinating cereal seeds. Biology, 6(2),31.https://doi.org/10.3390/biology6020031
Ali, Q., & Abbas, T. (2020). Effect of seed coating with humic acid on seed germination, growth, and yield of wheat under drought conditions. Agronomy Journal, 112(6), 2813-2824. https://doi.org/10.1002/agj2.20216
Khan, M. A., & Gul, B. (2017). Effect of gibberellic acid on seed germination and growth of saline-affected plants. Environmental and Experimental Botany, 139, 10-19. https://doi.org/10.1016/j.envexpbot.2017.03.010
Khalil et al. (2021). "Effect of humic acid and polymer coating on seed germination, growth, and yield of tomato under saline conditions." Agronomy, 11(10), 1924. https://doi.org/10.3390/agronomy11101924
Lohaus, G., Rühl, J., & Möller, K. (2019). Camelina sativa: An emerging crop for oil and biofuel production. Frontiers in Plant Science, 10, 1418. DOI: 10.3389/fpls.2019.01418
Özçınar, A. B. (2024). Investigation of the effects of different humic acid applications on seedling development of rapeseed (Brassica napus L.) under salt stress. ISPEC Journal of Agricultural Sciences, (Issue/Volume unspecified). https://doi.org/10.5281/zenodo.14586310