ارزیابی تیمارهای پوشش‌دهی بذر بر ویژگی‌های جوانه‌زنی رقم سهیل کاملینا (Camelina sativa L.) تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اگروتکنولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد

2 گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

3 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

10.22124/jms.2025.9415

چکیده

این آزمایش به‌منظور بررسی تأثیر پوشش‌دهی بذر کاملینا رقم سهیل بر خصوصیات جوانه‌زنی در شرایط تنش شوری در سال‌های 1401 و 1402 در آزمایشگاه‌های بذر دانشگاه فردوسی مشهد و مؤسسه بذر و نهال رضوی انجام شد. آزمایش به‌صورت فاکتوریل و طرح کامل تصادفی با سه تکرار اجرا شد. تیمارها شامل پوشش‌دهی با اسید هیومیک، پلیمر سوپرجاذب (اسید آکریلیک) مایع، عناصر میکرو، اسید جیبرلیک و ترکیب‌های مختلف آن‌ها و تنش شوری در چهار سطح (0، 150، 180، 210 میلی‌مولار) بودند. صفات جوانه‌زنی شامل درصد و میانگین جوانه‌زنی، طول ریشه‌چه، ساقه‌چه، و وزن خشک گیاهچه ارزیابی شد. نتایج نشان داد که تیمارهای پوشش‌دهی بذر تأثیر معنی‌داری بر ویژگی‌های رشدی گیاهچه داشتند. تیمار کنترل (بدون پوشش‌دهی) بیشترین درصد جوانه‌زنی (66/95%) را نشان داد. تیمار پلیمر سوپرجاذب بیشترین طول ریشه‌چه (69/1 سانتی‌متر) و طول ساقه‌چه (02/1 سانتی‌متر) را به خود اختصاص داد و نسبت به تیمار عناصر میکرو، %59/94 افزایش در طول ریشه‌چه و 50% افزایش در وزن خشک گیاهچه داشت. در شرایط تنش شوری، آب مقطر بیشترین درصد جوانه‌زنی (%42/93) و طول ریشه‌چه (93/2 سانتی‌متر) را نشان داد، در حالی‌که با افزایش سطح شوری، به‌ویژه در شوری 210 میلی‌مولار، درصد جوانه‌زنی به 40% کاهش یافت. به‌طور کلی، پوشش‌دهی پلیمر و ترکیب آن با اسید هیومیک باعث بهبود شاخص‌های رشد در شرایط شوری و تأثیر مثبت بر درصد جوانه‌زنی بذرها شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of seed coating treatments on germination characteristics of Camelina Camelina sativa L. soheil cultivar under salinity stress

نویسندگان [English]

  • Zeinab Saboohi 1
  • Akram Rostamipour 2
  • Reza Tavakkol Afshari 3
1 Department of Agrotechnology, College of Agriculture, Ferdowsi University of Mashhad
2 Department of Agrotoechnology, Ferdowsi University of Mashhad
3 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

This experiment was conducted to evaluate the effect of seed coating on the germination characteristics of Camelina sativa cultivar Sohail under salt stress conditions during the years 2022 and 2023 at the Seed Laboratories of Ferdowsi University of Mashhad and Razavi Seed and Seedling Institute. The experiment was designed as a factorial experiment based on a completely randomized design with three replications. The treatments included seed coating with humic acid, superabsorbent polymer (acrylic acid) liquid, micro-elements, gibberellic acid, and their various combinations, along with salt stress at four levels (0, 150, 180, 210 mM). Germination traits, including germination percentage, germination speed, root length, shoot length, and seedling dry weight, were evaluated. The results showed that seed coating treatments had a significant effect on seedling growth traits. The control treatment (without coating) showed the highest germination percentage (95.66%). The superabsorbent polymer treatment exhibited the highest root length (1.69 cm) and shoot length (1.02 cm), and compared to the micro-elements treatment, it resulted in a 94.59% increase in root length and a 50% increase in seedling dry weight. Under salt stress conditions, distilled water showed the highest germination percentage (93.42%) and root length (2.93 cm), while with increasing salt levels, especially at 210 mM, the germination percentage decreased to 40%. Overall, polymer coating and its combination with humic acid improved growth indices under salt stress and positively affected seed germination percentage.

کلیدواژه‌ها [English]

  • Camelina sativa
  • Germination
  • Salinity stress
  • Seed coating
Ahmed, M., Waraich, E. A., Hafeez, M. B., Zulfiqar, U., Ahmad, Z., Iqbal, M. A., ... & El Sabagh, A. (2023). Changing climate scenario: perspectives of Camelina sativa as low-input biofuel and oilseed crop. Global Agricultural Production: Resilience to Climate Change, 197-236. https://doi.org/10.1007/978-3-031-14973-3_7.
Afzal, I., Javed, T., Amirkhani, M., & Taylor, A.G. (2020). Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture, 10 (4), 526. [https://doi.org/10.3390/agriculture10040526](https://doi.org/10.3390/agriculture10040526)
Bakhshi, B., Rostami-Ahmadvandi, H., & Fanaei, H.R, 2021. Camelina, an adaptable oilseed crop for the warm and dried regions of Iran. Central Asian Journal of Plant Science Innovation, 1: 39-45.‏
Darlington, W. A. & Quastel, J. H. (1953). Absorption of sugars from isolated surviving intestine. Archives of Biochemistry and Biophysics, 43(1), 194–207. doi:10.1016/0003-9861(53)90099-X
Cao, Z., Zhang, Q., Wang, H., & Li, J. (2019). Seed coating enhances seed germination and seedling establishment in small-seeded species under stress conditions. Field Crops Research, 242, 1-10. https://doi.org/10.1016/j.fcr.2019.02.015
Beltrão, N. E. M., & Vieira, D. J. (Eds.). (2001). O agronegócio do gergelim no Brasil (348 p.). Brasília, DF, Brazil: Embrapa Informação Tecnológica. ISBN 85-7383-115-4.
Čanak, P., Zanetti, F., Jovičić, D., Vujošević, B., Miladinov, Z., Stanisavljević, D., Mirosavljević, M., Alberghini, B., Facciolla, E., & Marjanović-Jeromela, A. (2022). Camelina germination under osmotic stress − Trend lines, time-courses and critical points. Industrial Crops and Products, 181, 114761. https://doi.org/10.1016/j.indcrop.2022.114761
Dizaj, K. A. (2010). Seed coating of safflower (Carthamus tinctorius L.) in order to delay germination. African Journal of Plant Science, 4, 267–269
Ellis, R. H., & Roberts, E. H. (1980). Seed production (pp. 605–635). London: Butterworths.
Heydarian, Z., Yu, M., Gruber, M., Coutu, C., Robinson, S. J., & Hegedus, D. D. (2018). Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Scientific Reports, 8(1), 9804. https://doi.org/10.1038/s41598 018 28204 4
ISTA, 2022. International Rules for Seed Testing. International Seed Testing Association, Wallisellen.
ISTA (International Rules for Seed Testing). 2021. Chapter 9: i–9-12 (20). http://doi.org/10.15258/istarules.09.
Joy, E. J. M., Stein, A. J., Young, S. D., Ander, E. L., Watts, M. J., & Broadley, M. R. (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 389(1–2), 1–24. https://doi.org/10.1007/s11104-015-2430-8
Kameswara Rao, N., Dulloo, M. E., & Engels, J. M. M. (2017). A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Resources and Crop Evolution, 64(5), 1061–1074. https://doi.org/10.1007/s10722-016-0425-9
Kim, S. Y., Ha, J. S., Kim, P. J., Das, S., Gutierreze Suson, J., & Kim, G. W. (2022). A new approach for improving the nutritional quality of soybean (Glycine max L.) with iron slag coating. Agronomy, 12(12), 3126. https://doi.org/10.3390/agronomy12123126
Ovalesha, M. A., Yadav, B., & Rai, P. K. (2017). Effects of polymer seed coating and seed treatment on plant growth, seed yield and quality of cowpea (Vigna unguiculata). Journal of Pharmacognosy and Phytochemistry, 6(4), 106–109
Melo, B. A., Almeida, F. de A. C., Gomes, J. P., da Silva, W. P., Moreira, I. dos S., dos Santos, Y. M. G., Lisboa, J. F., da Silva, P. B., Silva, S. do N., & Primo, D. M. de B. (2019). Physiological response of colza (Brassica napus L.) seeds coated and treated with alternative materials. African Journal of Agricultural Research, 14, 943–948. https://doi.org/10.5897/AJAR2019.14044
Morales, D., Potlakayala, S., Soliman, M., Daramola, J., Weeden, H., Jones, A., Kovak, E., Lowry, E., Patel, P., Puthiyaparambil, J., Goldman, S., & Rudrabhatla, S. (2017). Effect of biochemical and physiological response to salt stress in Camelina sativa. Communications in Soil Science and Plant Analysis, 48(7), 716–729. https://doi.org/10.1080/00103624.2016.1254237
Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 397–409. https://doi.org/10.4067/S0718 95162015005000036
Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P., & Ercisli, S. (2022). Effect of zinc oxide nanoparticles (ZnO-NPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. Journal of Nanomaterials, 2022, Article ID 1892759, 1–15. https://doi.org/10.1155/2022/1892759
Srivastava, A. K., Suresh Kumar, J., & Suprasanna, P. (2021). Seed ‘primeomics’: plants memorize their germination under stress. Biological Reviews, 96(5), 1723–1743. https://doi.org/10.1111/brv.12722
Steppuhn, H., Falk, K. C., & Zhou, R. (2010). Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Canadian Journal of Soil Science, 90(1), 151–164. https://doi.org/10.4141/CJSS09046
Suganya, A., Saravanan, A., & Manivannan, N. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis, 51(15), 2001–2021. https://doi.org/10.1080/00103624.2020.1820030
Verma, O., & Verma, R. S. (2015). Effect of seed coating material and storage containers on germination and seedling vigour of soybean (Glycine max L.). SAARC Journal of Agriculture, 12(2), 16–24. https://doi.org/10.3329/sja.v12i2.21913
Yohannes, G., Kidane, L., Abraha, B., & Beyene, T. (2020). Effect of salt stresses on seed germination and early seedling growth of Camelina sativa L. Momona Ethiopian Journal of Science, 12(1), 1–19. https://doi.org/10.4314/mejs.v12i1.1
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
Jensen, E. S., Hauggaard Nielsen, H., & Ambus, P. (2006). The effect of seed size on seedling establishment and growth under different environmental conditions. Field Crops Research, 96(1), 53–61. https://doi.org/10.1016/j.fcr.2005.10.003
Liu, H., Wang, Z., Li, X., Zhao, C., & Liu, S. (2011). Effects of seed size and planting depth on seedling growth and yield in wheat. Field Crops Research, 121(1), 106–112. https://doi.org/10.1016/j.fcr.2010.11.004
Gorim, L., & Asch, F. (2017). Seed coating increases seed moisture uptake and restricts embryonic oxygen availability in germinating cereal seeds. Biology, 6(2),31.https://doi.org/10.3390/biology6020031
Ali, Q., & Abbas, T. (2020). Effect of seed coating with humic acid on seed germination, growth, and yield of wheat under drought conditions. Agronomy Journal, 112(6), 2813-2824. https://doi.org/10.1002/agj2.20216
Khan, M. A., & Gul, B. (2017). Effect of gibberellic acid on seed germination and growth of saline-affected plants. Environmental and Experimental Botany, 139, 10-19. https://doi.org/10.1016/j.envexpbot.2017.03.010
Khalil et al. (2021). "Effect of humic acid and polymer coating on seed germination, growth, and yield of tomato under saline conditions." Agronomy, 11(10), 1924. https://doi.org/10.3390/agronomy11101924
Lohaus, G., Rühl, J., & Möller, K. (2019). Camelina sativa: An emerging crop for oil and biofuel production. Frontiers in Plant Science, 10, 1418. DOI: 10.3389/fpls.2019.01418
Özçınar, A. B. (2024). Investigation of the effects of different humic acid applications on seedling development of rapeseed (Brassica napus L.) under salt stress. ISPEC Journal of Agricultural Sciences, (Issue/Volume unspecified). https://doi.org/10.5281/zenodo.14586310