اثر تیمار بذر با عصاره‌های جلبک سبز Ulva lactuca و جلبک سبز-آبی Nostoc commune بر روی شاخص‌های فیزیولوژیکی گیاهچه‌های ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد فیزیولوژی گیاهی، گروه علوم گیاهی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

2 استادیار فیزیولوژی گیاهی، گروه علوم گیاهی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

3 دانشیار، گروه سلولی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

4 استادیار، گروه علوم گیاهی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

10.22124/jms.2025.8801

چکیده

جلبک‌ها به عنوان منابع غنی از ترکیبات زیست فعال برای بهبود رشد گیاه مورد توجه قرار گرفته‌اند. پژوهش حاضر در سال 1401 با هدف بررسی تاثیر تیمار بذرهای ذرت با عصاره‌های آبی Ulva lactuca و Nostoc commune روی شاخص‌های رشد، میزان رنگدانه‌های فتوسنتزی و ترکیبات فنولیک گیاهچه‌های حاصل انجام شد. آزمایش در قالب طرح کاملاً تصادفی در شش سطح غلظت 0، 5/12، 25، 50، 75 و 100 درصد از عصاره‌ها اجرا شد. در تیمار با N. commune، بیشترین ارتفاع ساقه‌چه در تیمار با غلظت 50 درصد عصاره با 30/9 درصد افزایش، بیشترین طول ریشه‌چه در تیمار با غلظت 75 درصد عصاره با 01/4 درصد افزایش، بیشترین وزن گیاهچه در تیمار با غلظت 25 درصد عصاره با 86/31 درصد افزایش، بیشترین میزان کلروفیل b در تیمار با غلظت 75 درصد عصاره با 87/31 درصد افزایش و بیشترین میزان کاروتنوئید در تیمار با غلظت 75 درصد عصاره با 34/33 درصد افزایش نسبت به شاهد حاصل شد. در تیمار با U. lactuca، بیشترین میزان کلروفیل a در تیمار با غلظت 100 درصد عصاره با 79/64 درصد افزایش، بیشترین میزان فنل در تیمار با غلظت 75 درصد عصاره با 83/44 درصد افزایش و بیشترین میزان فلاونوئید در تیمار با غلظت 100 درصد عصاره با 03/42 درصد افزایش نسبت به شاهد حاصل شد. نتایج پیشنهاد می‌کند که عصاره‌های این جلبک‌ها می‌توانند به عنوان محرک زیستی و کود زیستی در بهبود شاخص‌های فیزیولوژیکی گیاهچه‌های ذرت موثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of seed treatment with extracts of the green algae Ulva lactuca and the blue-green algae Nostoc commune on physiological indices of corn seedlings

نویسندگان [English]

  • Seyed Mohsen Daryabari 1
  • Ehsan Nazifi 2
  • Bagher Seyedalipour 3
  • Sedigheh Kelij 4
1 MSc of Plant Physiology, Department of Plant Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
2 Assistant Professor of Plant Physiology, Department of Plant Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
3 Associate Professor, Department of Cellular and Molecular, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
4 Assistant Professor, Department of Plant Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
چکیده [English]

Algae have been considered as rich sources of bioactive compounds to improve plant growth. The present study was conducted in 2022 with the aim of investigating the effect of treating corn seeds with aqueous extracts of Ulva lactuca and Nostoc commune on growth indices, photosynthetic pigments and phenolic compounds levels of the resulting seedlings. The experiment was conducted in a completely randomized design at six concentration levels of 0, 12.5, 25, 50, 75, and 100% of the extracts. In the treatment with N. commune, the highest hypocotyl height in the treatment with 50% extract concentration with a 30.9% increase, the highest radicle length in the treatment with 75% extract concentration with a 4.01% increase, the highest seedling weight in the treatment with 25% extract concentration with a 31.86% increase, the highest chlorophyll b content in the treatment with 75% extract concentration with a 31.87% increase, and the highest carotenoid content in the treatment with 75% extract concentration with a 33.34% increase were obtained vs. the control. In the treatment with U. lactuca, the highest chlorophyll a content in the treatment with 100% extract concentration with a 64.79% increase, the highest phenol content in the treatment with 75% extract concentration with a 44.83% increase, and the highest flavonoid content in the treatment with 100% extract concentration with a 42.03% increase were obtained vs. the control. The results suggest that the extracts of these algae can be effective as biostimulants and biofertilizers in improving the physiological indices of corn seedlings.

کلیدواژه‌ها [English]

  • Algae extract
  • Biofertilizer
  • Growth stimulant
  • Phenolic compounds
  • Photosynthetic pigments
AghaAlikhani, M., Iranpour, A. and Naghdi Badi, H. 2013. Changes in agronomical and phytochemical yield of purple coneflower (Echinacea purpurea (L.) moench) under urea and three biofertilizers application. Journal of Medicinal Plants, 12 (46): 121-136. DOI: 20.1001.1.2717204.2013.12.46.12.5. (In Persian)(Journal)
Ainsworth, E. A. and Gillespie, K. M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2 (4): 875-877. DOI: 10.1038/nprot.2007.102. (Journal)
Akkol, E. K., Göger, F., Koşar, M. and Başer, K. H. C. 2008. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry, 108 (3): 942-949. DOI: 10.1016/j.foodchem.2007.11.071. (Journal)
Allen, D. J. and Ort, D. R. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6 (1): 36-42. (Journal)
Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1): 1. DOI: https://doi.org/10.1104/pp.24.1.1. (Journal)
Asadi, M., Rasouli, F., Amini, T., Hassanpouraghdam, M. B., Souri, S., Skrovankova, S., Mlcek, J. and Ercisli, S. 2022. Improvement of photosynthetic pigment characteristics, mineral content, and antioxidant activity of lettuce (Lactuca sativa L.) by arbuscular mycorrhizal fungus and seaweed extract foliar application. Agronomy, 12 (8): 1943. DOI: 10.3390/agronomy12081943. (Journal)
Battacharyya, D., Babgohari, M. Z., Rathor, P. and Prithiviraj, B. 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196: 39-48. DOI: 10.1016/j.scienta.2015.09.012 (Journal)
Battah, M. G., Mostfa, M. A., Eladel, H. M., Soror, A. S. and Tantawy, M. M. 2021. Physiological response of fenugreek (Trigonella foenum-graecum L.) plant treated by farmyard manure and two selected seaweeds as biofertilizers. Benha Journal of Applied Sciences, 6 (2): 115-124. DOI: 10.21608/bjas.2021.168294. (Journal)
Blunden, G. and Wildgoose, P. B. 1977. The effects of aqueous seaweed extract and kinetin on potato yields. Journal of the Science of Food and Agriculture, 28 (2): 121-125. DOI: 10.1002/jsfa.2740280203. (Journal)
Braun, J. C. and Colla, L. M. 2023. Use of microalgae for the development of biofertilizers and biostimulants. BioEnergy Research, 16 (1): 289-310. DOI: 10.1007/s12155-022-10456-8. (Journal)
Chaturvedi, S., Kulshrestha, S. and Bhardwaj, K. 2022. Role of seaweeds in plant growth promotion and disease management. In: Singh, H. B. and Vaishnav, A. (Eds.) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier. pp: 217-238. DOI: 10.1016/B978-0-323-85579-2.00007-1.
Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C. and Rouphael, Y. 2018. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Frontiers in Plant Science, 9: 1782. DOI: 10.3389/fpls.2018.01782. (Journal)
Crouch, I. J. and Van Staden, J. 1993. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation, 13: 21-29. DOI: 10.1007/BF00207588. (Journal)
Dey, A. K., Sharma, M. and Meshram, M. R. 2016. An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Procedia Computer Science, 85: 286-292. DOI: 10.1016/j.procs.2016.05.235. (Journal)
Dineshkumar, R., Duraimurugan, M., Sharmiladevi, N., Lakshmi, L. P., Rasheeq, A. A., Arumugam, A. and Sampathkumar, P. 2020. Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L.) an experimental cultivation. Biomass Conversion and Biorefinery, 1-21. DOI: 10.1007/s13399-020-00857-0. (Journal)
Dmytryk, A. and Chojnacka, K. 2018. Algae as fertilizers, biostimulants, and regulators of plant growth. In: Chojnacka, K., Wieczorek, P., Schroeder, G. and Michalak, I. (Eds.) Algae Biomass: Characteristics and Applications. Developments in Applied Phycology, vol 8. Springer, Cham. pp: 115-122. DOI: 10.1007/978-3-319-74703-3_10.
Esch, C. 2014. A Native Cyanobacteria, Nostoc, as a Biofertilizer. Thesis Projects for the Degree Bachelor of Science, Western Kentucky University, United States. (Thesis)
Fan, D., Hodges, D. M., Zhang, J., Kirby, C. W., Ji, X., Locke, S. J., Critchley, A. T. and Prithiviraj, B. 2011. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chemistry, 124 (1): 195-202. DOI: 10.1016/j.foodchem.2010.06.008. (Journal)
Food and Agriculture Organization. 2024. Agricultural production statistics 2010–2023. FAOSTAT Analytical Briefs, No. 96. Rome. Retrieved December 17, 2024. from https://openknowledge.fao.org/handle/20.500.14283/cd3755en
Ghalab, A.M. and Salem, S.A. 2001. Effect of bio-fertilizer treatments on growth, chemical composition and productivity of wheat grown under different levels of NPK fertilization. Annals of Agricultural Science Cairo, 46: 485-509. (Journal)
Górka, B., Korzeniowska, K., Lipok, J. and Wieczorek, P. P. 2018. The Biomass of algae and algal extracts in agricultural production. In: Chojnacka, K., Wieczorek, P., Schroeder, G. and Michalak, I. (Eds.) Algae Biomass: Characteristics and Applications. Developments in Applied Phycology, vol 8. Springer, Cham. pp: 103-114. DOI: 10.1007/978-3-319-74703-3_9
Han, X., Zeng, H., Bartocci, P., Fantozzi, F. and Yan, Y. 2018. Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation, 4 (2): 25. DOI: 10.3390/fermentation4020025. (Journal)
Hernández-Herrera, R. M., Sánchez-Hernández, C. V., Palmeros-Suárez, P. A., Ocampo-Alvarez, H., Santacruz-Ruvalcaba, F., Meza-Canales, I. D. and Becerril-Espinosa, A. 2022. Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy, 12 (10): 2495. DOI: 10.3390/agronomy12102495. (Journal)
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J. and Hernández-Carmona, G. 2014. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26: 619-628. DOI: 10.1007/s10811-013-0078-4. (Journal)
Ismail, G. and Abo-Hamad, S. 2017. Effect of different Anabaena variabilis (Kütz) treatments on some growth parameters and physiological aspects of Hordeum vulgare L. and Trigonella foenum-graecum L. Egyptian Journal of Botany, 57 (3): 507-516. DOI: 10.21608/ejbo.2017.774.1046. (Journal)
Kapoore, R. V., Wood, E. E. and Llewellyn, C. A. 2021. Algae biostimulants: a critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49: 107754. DOI: 10.1016/j.biotechadv.2021.107754. (Journal)
Khan, N., Sudhakar, K. and Mamat, R. 2024. Eco-friendly nutrient from Ocean: exploring Ulva seaweed potential as a sustainable food source. Journal of Agriculture and Food Research, 17: 101239. DOI: 10.1016/j.jafr.2024.101239. (Journal)
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J. and Prithiviraj, B. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28: 386-399. DOI: 10.1007/s00344-009-9103-x. (Journal)
Khandan Deh-Arbab, S., Aminifard, M. H., Fallahi, H. R. and Kaveh, H. 2020. Evaluating the effects of growth promoting fertilizer containing seaweed extract and mother corm weight on antioxidant activity and stigma quality of saffron. Plant Productions, 43 (2): 213-226. DOI: 20.1001.1.2588543.1399.43.2.5.2. (In Persian)(Journal)
Kim, S. K., Pangestuti, R. and Rahmadi, P. 2011. Sea lettuces: culinary uses and nutritional value. Advances in food and nutrition research, 64: 57-70. DOI: 10.1016/B978-0-12-387669-0.00005-3. (Journal)
Kumar, G., Nanda, S., Singh, S. K., Kumar, S., Singh, D., Singh, B. N. and Mukherjee, A. 2024. Seaweed extracts: enhancing plant resilience to biotic and abiotic stresses. Frontiers in Marine Science, 11: 1457500. DOI: 10.3389/fmars.2024.1457500. (Journal)
Madhusudan, S. and Baskaran, R. 2023. The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. Algal Research, 71: 103069. DOI: 10.1016/j.algal.2023.103069. (Journal)
Mafakheri, S. 2017. Effect of some organic and chemical fertilizers on morphological and biochemical factors of fenugreek (Trigonella foenum-graecum L.). Plant Productions, 40 (3): 27-40. DOI: 10.22055/ppd.2017.19128.1378. (In Persian)(Journal)
Moradi, F., Najafi, S., Esmaeilzadeh Bahabadi S. 2019. The effect of green algae (Ulva fasciata L.) extract on growth and physiological parameters of Sesamum indicum. Plant Process and Function, 8 (33): 1-14. DOI: 20.1001.1.23222727.1398.8.33.6.6. (In Persian) (Journal)
Mukherjee, A. and Patel, J. S. 2020. Seaweed extract: biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology, 17 (1): 553-558. DOI: 10.1007/s13762-019-02442-z. (Journal)
Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y. and Hicham, E. A. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports, 10 (1): 2820. DOI: 10.1038/s41598-020-59840-4. (Journal)
Nair, P., Kandasamy, S., Zhang, J., Ji, X., Kirby, C., Benkel, B., Hodges, M. D., Critchley, A., Hiltz, D. and Prithiviraj, B. 2012. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics, 13: 1-23. DOI: 10.1186/1471-2164-13-643. (Journal)
Osaki, M. 1995. Comparison of productivity between tropical and temperate maize: I. Leaf senescence and productivity in relation to nitrogen nutrition. Soil Science and Plant Nutrition, 41 (3): 439-450. DOI: 10.1080/00380768.1995.10419606. (Journal)
Osman, M. E. H., El-Sheekh, M. M., El-Naggar, A. H. and Gheda, S. F. 2010. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46: 861-875. DOI: 10.1007/s00374-010-0491-7. (Journal)
Pan, S., Jeevanandam, J. and Danquah, M. K. 2019. Benefits of algal extracts in sustainable agriculture. In: Hallmann, A. and Rampelotto, P. (Eds.)  Grand Challenges in Algae Biotechnology. Springer, Cham. pp: 501-534. DOI: 10.1007/978-3-030-25233-5_14.
Patel, J. J., Mangroliya, R. M. and Patel, N. A. 2022. Effect of seaweed extracts on growth, yield, and quality of fruit crops: a review. International Journal of Environment and Climate Change, 12 (11): 2001-2009. DOI: 10.9734/IJECC/2022/v12i1131189. (Journal)
Pathak, J., Maurya, P.K., Singh, S.P., Häder, D.P. and Sinha, R.P. 2018. Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Science, 6: 7-19. DOI: 10.3389/fenvs.2018.00007. (Journal)
Pise, N. M. and Sabale, A. B. 2010. Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. Journal of Phytology, 2 (4): 50-56.  Retrieved January 01, 210. https://updatepublishing.com/journal/index.php/jp/article/view/2125.
Rady, M. M., Taha, S. S. and Kusvuran, S. 2018. Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. Scientia Horticulturae, 233: 61-69. DOI: 10.1016/j.scienta.2018.01.047. (Journal)
Raja, B. and Vidya, R. 2023. Application of seaweed extracts to mitigate biotic and abiotic stresses in plants. Physiology and Molecular Biology of Plants, 29 (5): 641-661. DOI: 10.1007/s12298-023-01313-9. (Journal)
Righini, H. and Roberti, R. 2019. Algae and Cyanobacteria as Biocontrol Agents of Fungal Plant Pathogens. In: Varma, A., Tripathi, S. and Prasad, R. (Eds.) Plant Microbe Interface. Springer, Cham. pp: 219-238. DOI: 10.1007/978-3-030-19831-2_9.
Rohela, G. K. and Saini, P. 2022. Nitrogen-fixing biofertilizers and biostimulants. In: Inamuddin, , Adetunji, C. O., Ahamed, M. I. and Altalhi, T. (Eds.) Microbial biostimulants for sustainable agriculture and environmental bioremediation. CRC Press. pp: 83-100. DOI: 10.1201/9781003188032
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E. and Tava, A. 2019. Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9 (4): 192. DOI: 10.3390/agronomy9040192. (Journal)
Santini, G., Rodolfi, L., Biondi, N., Sampietro, G. and Tredici, M. R. 2022. Effects of cyanobacterial-based biostimulants on plant growth and development: a case study on basil (Ocimum basilicum L.). Journal of Applied Phycology, 34 (4): 2063-2073. DOI: 10.1007/s10811-022-02781-4. (Journal)
Shanan, N. T. and Higazy, A. M. 2009. Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana. Research Journal of Agriculture and Biological Sciences, 5 (6): 1162-1168. (Journal)
Shariatmadari, Z., Riahi, H. and Shokravi, S. 2011. Study of soil blue-green algae and their effect on seed germination and plant growth of vegetable crops. Rostaniha, 12 (2): 101-110. DOI: 10.22092/botany.2012.101404. (Journal)
Shridhar, B. S. 2012. Nitrogen fixing microorganisms. International Journal of Microbiology Research, 3 (1): 46-52. DOI: 10.5829/idosi.ijmr.2012.3.1.61103. (Journal)
Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., Singh, V. and Prasad, S. M. 2017. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Frontiers in Microbiology, 8: 515. DOI: 10.3389/fmicb.2017.00515. (Journal)
Singh, S. 2014. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. Journal of Applied Microbiology, 117 (5): 1221-1244. DOI: 10.1111/jam.12612. (Journal)
Thirumaran, G., Arumugam, M., Arumugam, R. and Anantharaman, P. 2009) Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (l) medikus. American-Eurasian Journal of Agronomy 2: 57-66. (Journal)
Win, T.T., Barone, G.D., Secundo, F. and Fu, P. 2018. Algal biofertilizers and plant growth stimulants for sustainable agriculture. Industrial Biotechnology, 14 (4): 203-211. DOI: 10.1089/ind.2018.0010. (Journal)
Wu, S. J. and Ng, L. T. 2008. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT-Food Science and Technology, 41 (2): 323-330. DOI: 10.1016/j.lwt.2007.03.003. (Journal)