تأثیر اتیلن روی جوانه‌زنی و رشد هتروتروفی گیاهچه‌های گلرنگ (Carthamus tinctorius L) تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم و تکنولوژی بذر، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دکتری اکولوژی گیاهان زراعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22124/jms.2024.8791

چکیده

به منظور بررسی تأثیر سطوح مختلف اتیلن روی خصوصیات جوانه‌زنی و فعالیت آنزیم‌های آنتی‌اکسیدانی در گلرنگ تحت تنش شوری، آزمایشی به صورت فاکتوریل در قالب طرح کاملا" تصادفی با سه تکرار در آزمایشگاه زراعت دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1402 انجام شد. تیمارها شامل چهار سطح مختلف شوری (صفر، 150، 300، 450 میلی‌مولار نمک کلرید سدیم) و پنج سطح مختلف اتیلن (صفر، 5/0، 1، 5/1، 2 در هزار) بود. نتایج نشان داد که تنش شوری درصد‌ جوانه‌زنی، سرعت جوانه‌زنی و وزن خشک گیاهچه را کاهش داد، ولی تیمار با سطوح مختلف اتیلن، به‌ویژه غلظت 2 در هزار، اثرات تنش شوری بر این صفات را تعدیل کرد. تنش شوری میانگین مدت جوانه‌زنی را افزایش داد به‌طوری‌که بیش‌ترین میانگین مدت جوانه‌زنی (19/2 روز) مربوط به تیمار با آب مقطر و شوری 450 میلی‌مولار بود. تیمار با اتیلن غلظت 2 در هزار و بدون تنش شوری طول گیاهچه را افزایش داد و بیشترین طول گیاهچه (07/4 سانتی‌متر) در این تیمار مشاهده شد. بیش‌ترین فعالیت آنزیم‌های کاتالاز و سوپراکسید‌دیسمیوتاز، میزان عنصر سدیم، نسبت سدیم به پتاسیم و مالون‌دی‌آلدئید در تیمار با آب مقطر و شوری 450 میلی‌مولار مشاهده گردید. بیش‌ترین فعالیت آنزیم پراکسیداز (84/1 واحد میلی‌گرم بر پروتئین) در تیمار اتیلن با غلظت 1 در هزار و بیش‌ترین مقدار پتاسیم (45/33 میلی‌گرم به ازای هر کیلوگرم وزن خشک) در غلظت اتیلن 5/1 در هزار مشاهده شد. تیمار با اتیلن موجب تقویت شاخص‌های جوانه‌زنی، شاخص‌های رشد و صفات بیوشیمیایی بذرهای گلرنگ تحت تنش شوری شد و رشد گیاهچه را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of ethylene on germination and heterotrophic growth of safflower (Carthamus tinctorius L.) seedlings under salinity stress

نویسندگان [English]

  • Negin Amanzadeh Ghoojeh Bagloo 1
  • Mohammad Sedghi 2
  • Raouf Seyed Sharifi 2
  • Haniyeh Saadat 3
1 M.Sc. Student of Seed Science and Technology, University of Mohaghegh Ardabili, Ardabili, Iran
2 Professor, Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabili, Iran
3 Ph.D. Ecology of Crop Plants, University of Mohaghegh Ardabili, Ardabili, Iran
چکیده [English]

To investigate the effect of different ethylene levels on germination traits and antioxidant enzyme activity of safflower under salt stress, a factorial experiment was conducted in a completely randomized design with three replications at the Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili in 2023-2024. The treatments included four different salt levels (0, 150, 300, 450 mM from sodium chloride) and five different ethylene concentrations (0, 0.5, 1, 1.5, 2 per thousand, ppt). The results showed that salt stress reduced the germination percentage, germination rate, and dry weight of seedlings. However, treatments with different levels of ethylene, particularly at a concentration of 2 ppt, moderated the effects of salt stress on these traits. Salt stress increased the average germination duration, with the highest average duration (2.19 days) observed for treatments with distilled water and 450 mM salt. The treatment with ethylene at 2 ppt, under non-salt stress, increased seedling length, with the maximum seedling length (4.07 cm) recorded in this treatment. The highest activity of catalase and superoxide dismutase enzymes, sodium content, sodium-to-potassium ratio, and malondialdehyde levels were observed in treatments with distilled water and 450 mM salt. The highest activity of the peroxidase enzyme (1.84 units mg-1 of protein) was found in the ethylene treatment at a concentration of 1 ppt, while the highest amount of potassium (33.45 mg kg-1 dry weight) was observed at an ethylene concentration of 1.5 ppt. The ethylene treatment enhanced germination indices, growth indices, and biochemical traits of safflower seeds under salt stress, leading to increased seedling growth.

کلیدواژه‌ها [English]

  • Catalase
  • Malondialdehyde
  • Potassium
  • Sodium
  • Superoxide dismutase
Abeles, F. B., Dunn, L. J., Morgens, P., Callahan, A., Dinterman, R. E. and Schmit, J. 1988. Induction of 33-kD and 60 kD peroxidases during ethylene induced senescence of cucumber cotyledons. Plant Physiology, 87: 609–615. DOI: 10.1104/pp.87.3.609. (Journal)
Achorro, P., Ortiz, A. and Cerda, A. 1994. Implications of calcium nutrition on the response of (Phaseolus vulgaris L.) to salinity. Plant and Soil, 159: 205-212. DOI: 10.1007/BF00009282. (Journal)
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-.621. DOI: 10.1016/S0076-6879(84)05016-3. (Journal)
Ajmal Khan, M. and Gulzar, S. 2003. Light, salinity and temperature effects on the seed germination of perennial grasses. American Journal Botany, 90(1):131-134. DOI: 10.3732/ajb.90.1.131. (Journal)
Arnoa, M. B. and Hernandez- Ruiz, J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends in plant Science, 19(12): 789-79. DOI: 10.1016/j.tplants.2014.07.006. (Journal)
Baskin, C.C. and Baskin, J.M. 2014. Ecology, Biogeography, and, Evolution of Dormancy and Germination. 2d Edition.  Hardback ISBN: 9780124166776. eBook ISBN: 9780124166837. (Book)
Copeland, L. O. and McDonald, M. B. 2001. Seed Ecology. In book: Principles of Seed Science and Technology (pp.58-71).  DOI:10.1007/978-1-4615-1619-4_4. (Book Chapter)
Debjani, D. and Bratati, D. 2002. Effect of ethephon on antioxidant enzymes and diosgenin production in seedlings of Trigonella foenum-graecum. Food Chemistry, 82 (2003) 211–216. DOI: 10.1016/S0308-8146(02)00514-9. (Journal)
De Vos, C. H. R., Schat, H., De Waal, M. A. M., Vooijs, R. and Ernst, W.H.O. 1991. Increased to copper-induced damage of the root plasma membrane in copper tolerant Silene cucubalus. Plant Physiology, 82: 523-528. DOI: 10.1111/j.1399-3054. 1991.tb02942. x. (Journal)
Ellis, R. H. and Roberts, E. H. 1980. Towards a rational basis for testing seed quality. In: Researching the Seed Production (ed. Hebblethwaite, P. D.) Pp. 605-635. Butterworth’s, London. DOI: 10.4236/as.2015.62022.
Esanejad, N., Omidy, H. and Pravar, A. 2015. Effect of safflower seeds priming with abscisic and gibberellic acid on germination indices in salinity stress condition. Journal of Agroecology, 11(4): 1-11. DOI: 10.22034/aej.2016.521052. (In Persian) (Journal)
Fahimi, H. 1997. Plant growth regulator. Tehran University Publications. Reb .172. (In Persian) (Book)
Faithfull, N. T. 2002. Acide-digestion, ashing and extraction procedures. Pp. 30-54. Methods in agricultural chemical analysis CABI publishing. Wallingford. (Hand Book)
Freitas, V. S., de Souza Miranda, R., Costa, J. H., de Oliveira, D. F.  de Oliveira Paula, S., de Castro Miguel, E., Freire, R. S., Prisco, J. T. and Gomes-Filho, E. 2018. Ethylene triggers salinity tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environmental and Experimental Botany, 145: 75–86. DOI: 10.1016/j.envexpbot.2017.10.022. (Journal)
Gharbi, E., Martínez, J. P., Benahmed, H., Lepoint, G., Vanpee, B., Quinet, M. and Lutts, S. 2017. Inhibition of ethylene synthesis reduces salinity-tolerance in tomato wild relative species Solanum chilense. Journal of Plant Physiology, 210: 24–37. DOI: 10.1016/j.jplph.2016.12.001. (Journal)
Ghasemi, V., Ehtesham Nia, A., RezaeiNejad, A. and Mumivand, H. 2021. Investigation of Growth Indices and Gas Exchanges in Two Cultivars of Sweet William (Dianthus barbatus) under Salinity Stress. Journal of Horticultural Science, 37(1): 75-88. DOI: 10.22067/jhs.2021.71942.1081. (Journal)
Giannopolitis, C. N. and Ries, S.K. 1977. Suoeroxide dismutase. I. Occurrence in higher plants. Plant Physiology, 59: 309-314. DOI: 10.1104/pp.59.2.309. (Journal)
Grichko, V. P. and Glick, B.R. 2001. Ethylene and flooding stress in plants. Plant Physiology and Biochemistry, 39(1): 1-9. DOI: 10.1016/S0981-9428(00)01213-4. (Journal)
Guo, Y.Y., Yu, H.Y., Yang, M. M., Kong, D. S. and Zhang, Y. J. 2018. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling. Russian Journal of Plant Physiology, 65(2): 244-250. DOI: doi.org/10.1134/S1021443718020127 (Journal)
Hartman, S., Liu, Z., van, H., Veen, J., Vicente, E., Reinen, S., Martopawiro, H., Dongen, N., Bosman, F., Bassel, G. W., Visser, E. J. W., Bailey-Serres, J., Theodoulou, F. L., Hebelstrup, K. H., Gibbs, D. J., Holdsworth, M. J., Sasidharan, R. and Voesenek, L. A. C. J. 2019. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications, 10(1): 4020. DOI: 10. 1038/s41467-019-12045. (Journal)
Ibrahim, M. E. H., Zhu, X., Zhou, G. and. Abidallhaa, E. H. 2016. Effects of nitrogen on seedling growth of wheat varieties under salt stress. Journal of Agricultural Science, 8: 131. Doi:10.5539/jas.v8n10p131. (Journal)
Jung, J. Y., Shin, R. and Schachtman, D. P. 2009. Ethylen emediatesresponseand toleranc etopotassiumdeprivationin Arabidopsis. Plant Cell, 21: 607–621. DOI: 10.1105/tpc.108.063099. (Journal)
Kafi, M., Nezami, A., Hoseyni, H. and Masoomi, A. 2005. Physiological effects of drought stress by polyethylene glycol on germination of lentil (Lens culinaris Medik.) genotypes. Iranian
Journal of Field Crops Research, 3: 69-80. DOI: 10.22067/gsc. v3i1.1293. (In Persian) (Journal)
Khajehpour, M. R. 2004. Industrial Plants. Isfahan University of Technology publication, 571p. (In Persian) (Book)
Kieber, J. J. 1997. The ethylene signal transduction pathway in Arabidopsis. Journal of Experimental Botany, 48(2): 211–218. DOI: 10.1093/jxb/48.2.211. (Journal)
Kim, K. Y., Kwon, H. K., Kwon, S. Y., Lee, H. S., Hur, Y., Bang, J. W., Choi, K. S. and Kwak, S. S. 2000. Differential Expression of sweet potato peroxidase genes in response to abscisic acid and ethephon. Phytochemistry, 54: 19–22. DOI: 10.1016/S0031-9422(00)00014-5. (Journal)
MacAdam, J. W., Nelson, R. and Sharp, E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99: 872-878. DOI: 10.1104/pp.99.3.872. (Journal)
Makar, T. K., Tura, O. and Ekmecd, Y. 2009. Effects of water deficit induced by PEG and NaCl on chickpea (Cicer arietnum L.) Cultivars and lines at early seedling stages. Gazi University Journal of Science, 22(1): 5-14. (Journal)
Marschner, P. 2011. Marschner’s Mineral Nutrition of Higher Plants: Third Edition. (Book)
 
Muhammad, S., Akbar, M. and Neue, H.U. 1987. Effect of NaCl and Na/K relation in saline culture solution in the growth and mineral nutrition of rice (Oryza sativa L.). Plant and Soil. 104: 57-62. DOI: doi.org/10.1007/BF02370625 (Journal)
Omidi, H., Jafarzadeh, L. and Naghdi Badi, H. 2014. Seeds of medicinal plants and crops. Tehran University Publications. Reb. 444. (In Persian) (Book)
Pirasteh- Anosheh, H., Rosta, M. J. and Emam, Y. 2015. Different methods of treating crops with salicylic acid in salinity research. National Salinity Research Center, Yazd, DOI: 10.3390%2Fijerph19031576. (In Persian) (Journal)
Poljakoff-Maybo, A., Somers, G. F. and Werker, E. G. 1994. Seeds of Kosteletzkya virginica
(Malvacea): Their structure, germination and salt tolerance. American Journal of Botany, 81: 54- 59. DOI: 10.1002/j.1537-2197. 1992.tb14545. x. (Journal)
Redouane, E. and Mohamed, N. 2015. Adaptive response to salt stress in sorghum (Sorghum bicolor). American-Eurasian Journal of Agricultural and Environmental Sciences, 15: 1351-1360. DOI: 10.5829/idosi.aejaes.2015.15.7.12683. (Journal)
Saadat, H. and Sedghi, M. 2024. The effect of priming on seed germination indices and antioxidant enzyme activity in chickpea seedlings (Cicer arietinum L.) under salinity stress. Iranian Journal of Seed Science and Research, 11(1): 15-29. DOI: 10.22124/JMS.2024.8036 (In Persian) (Journal)
Saadat, T., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023a. Effect of chitosan on germination indices of common bean (Phaseolus vulgaris L. cv. Sadri) seeds under salt stress, Iranian Journal of Seed Research, 9(2): 151-162. DOI:10.61186/yujs.9.2.151 (In Persian) (Journal)
Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023b. Expression of gibberellin synthesis genes and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iranian Journal of Plant Physiology, 13(4): 4715-4728. https://doi.org/10.30495/IJPP.2023.1978837.1460. (Journal)
Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023c. The effect of chitosan priming on germination indices and biochemical characteristics of French bean seeds (Phaseolus vulgaris L. cv. Sadri) under salinity stress. Iranian Journal of Seed Research, 10(2): 21-34. DOI:10.61186/yujs.10.2.21 (In Persian) (Journal)
Saberali, S. F. and Moradi, M. 2019. Effect of salinity on germination and seedling growth of
Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethumgraveolens. Journal of the Saudi Society of Agricultural Sciences, 18(3): 316-323. DOI: 10.1016/j.jssas. 2017.09.004. (Journal)
Sairam, R. K., Rao, K. V. and Srivastava, G. C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyteconcentration. Plant Science, 163: 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9. (Journal)
Shiyab, S. 2011. Effects of NaCl application to hydroponic nutrient solution on macro and micro elements and protein content of hot pepper (Capsicum annuum L.). Journal of Food, Agriculture and Environment, 9(2):350-356. (Journal)
Siahmansour, S., Ehtesham-Nia, A. and Rezaenejad, A. 2020. Effect of salicylic acid foliar application on Morphophysiological and biochemical traits of Goldenberry (Physalis peruviana L.) under salinity stress condition. Journal of Plant Production Research, 27(1): 165-178. DOI: 10.22069/jopp.2020.16087.2448. (Journal)
Siringam, K., Juntawong, N., Cha-um, S. and Kirdmanee, C. 2011. Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under isoosmotic conditions. African Journal of Biotechnology, 10(8): 1340-1346. DOI: 10.5897/AJB10.1805. (Journal)
Stepanova, A. and Ecker, J. R. 2000. Ethylene signaling: from mutants to molecules. Current opinion in Plant Biology, 3(5):353-60. DOI: 10.1016/s1369-5266(00)00096-0. (Journal)
Suge, H., Nishizawa, T., Takahashi, H. and Takeda, K. 1997. Phenotypic plasticity of internode elongation stimulated by deep seeding and ethylene in wheat seedlings. Plant, Cell and Environment, 20: 961–964. DOI: 10.1046/j.1365-3040. 1997.d01-126. x. (Journal)
Wang, Y., Diao, P., Kong, L., Yu, R., Zhang, M., Zuo, T., Fan, Y., Niu, Y., Yan, F.,
and Wuriyanghan, H. 2020. Ethylene Enhances Seed Germination and Seedling Growth Under Salinity by Reducing Oxidative Stress and Promoting Chlorophyll Content via ETR2 Pathway. Frontiers in Plant Science, 11:1066. DOI: 10.3389/fpls.2020.01066 (Journal)
Wang, Y., Zhao, C., Wang, X., Shenand, H. and Yang, L. 2023. Exogenous Ethylene Alleviates the Inhibition of Sorbus pohuashanensis Embryo Germination in a Saline-Alkali Environment (NaHCO3). International Journal of Molecular Sciences, 24(4244). DOI: 10.3390/ ijms24044244. (Journal)
Wolf, W. J. 2000. Oilseed crops (2nd edition). In: E.A. Weiss (ed.), Blackwell Science, Oxford, ix+364. Journal of the Science of Food and Agriculture, 80(10): 1572-1573. (Book)
Xu, L., Xiang, G., Sun, Q., Ni, Y., Jin, Z., Gao, Z. and Yao, Y. 2019. Melatonin enhances salinity tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Horticultural Research, 6: 114. DOI: 10.1038/s41438-019-0197-4. (Journal)
Yang, S. F. and Hoffman, N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review in Plant Physiology, 35:155–189. DOI: 1146/annurev.pp.35.060184.001103. (Journal)
Yang, L., Zu, Y. G. and Tang, Z. H. 2013. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany, 86: 60-69. DOI: 10.1016/j.envexpbot.2010.08.006. (Journal)
Zeinali, E. 1999. Safflower (Carthamus tinctorius L.) Identification, Production and Consumption. Gorgan University of Agricultural Sciences and Natural Resources Publication, 144p. (In Persian) (Book)
Zhou, L., Yan, Y., Wang, Y., Wu, Q., Yan, J. and Pei, J. 2023. Research progresses and prospects of medicated oil dual-purpose crop safflower based on patent mining. Oil Crop Science, 7: 209-218. DOI: 10.1016/j.ocsci.2022.10.001. (Journal)