اثر پرایمینگ با جیبرلین بر ویژگی‌های جوانه‌زنی و فعالیت آنزیم‌های آنتی‌اکسیدانت گیاهچه کینوا (Chenopodium quinoa) تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری اکولوژی گیاهان زراعی دانشگاه محقق اردبیلی

2 استاد گروه زراعت دانشکده کشاورزی دانشگاه محقق اردبیلی

10.22124/jms.2024.8790

چکیده

به‌منظور بررسی اثر پرایمینگ با جیبرلین بر ویژگی‌های جوانه‌زنی و فعالیت آنزیم‌های آنتی‌اکسیدانت گیاهچه کینوا تحت تنش شوری آزمایشی به‌صورت فاکتوریل در قالب طرح آماری کاملا تصادفی با سه تکرار در سال 1403 در آزمایشگاه دانشگاه محقق اردبیلی اجرا شد. تیمارها شامل چهار سطح شوری (0، 150، 300 و 450 میلی‌مولار) و چهار سطح جیبرلین (0، 100، 150 و 200 میلی‌گرم در لیتر) بود. نتایج نشان داد که شوری، سرعت جوانه‌زنی، طول ریشه‌چه، ساقه‌چه و گیاهچه را کاهش داد، ولی پرایمینگ بذر با هیدرو، سطوح مختلف جیبرلین به‌ویژه غلظت 200 میلی‌گرم در لیتر این صفات را بهبود بخشید. سرعت جوانه‌زنی روزانه و میانگین مدت جوانه‌زنی به ترتیب در حدود 15 و 65 درصد نسبت به شاهد شوری بیشتر بود و در پرایمینگ با جیبرلین 200 میلی‌گرم در لیتر نسبت به شاهد حدود 8 و 42 درصد کاهش نشان دادند. میزان فعالیت آنزیم کاتالاز و آسکوربات پراکسیداز در شاهد و شوری450 میلی‌مولار نسبت به جیبرلین با غلظت 200 میلی‌گرم در لیتر و بدون شوری به ترتیب در حدود 86 و 92 درصد افزایش نشان دادند. فعالیت آنزیم پراکسیداز و سوپراکسیددیسمیوتاز در کاربرد با جیبرلین به ترتیب حدود 25 و 34 درصد نسبت به شاهد کمتر بود. همچنین، فعالیت آنزیم آلفا آمیلاز در تیمار با غلظت 200 میلی‌گرم در لیتر جیبرلین و سطح بدون شوری نسبت به شاهد و شوری 450 میلی‌مولار حدود 89 درصد افزایش نشان داد. نتیجه‌گیری می‌شود که تیمار بذر با سطوح مختلف جیبرلین می‌تواند اثرات مضر تنش شوری بر برخی صفات در گیاهچه کینوا را کاهش داده و رشد گیاهچه را بهبود بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of seed priming with gibberellin on germination characteristics and antioxidant enzyme activity in quinoa (chenopodium quinoa willd) seedlings under salinity stress

نویسندگان [English]

  • Haniyeh Saadat 1
  • Mohammad Sedghi 2
1 Ph.D. Ecology of Crop Plants, University of Mohaghegh Ardabili
2 Professor of Agriculture Department, Faculty of Agriculture, University of Mohaghegh Ardabili
چکیده [English]

In order to investigate the Effect of seed priming with gibberellin on germination characteristics and antioxidant enzyme activity in quinoa seedlings under salinity stress and an experiment was conducted based on completely randomized design arranged in factorial with three replications at University of Mohaghegh Ardabili Laboratory in 2024. Treatments were four salinity levels (0, 150, 300 and 450 mM Derived from NaCl) and four levels of gibberellin (0, 100, 150 and 200 mgL-1). The results showed that salinity stress reduced Germination Rate, Radicle length, Plumule length and seedling length. But priming with distilled water, different levels of gibberellin, especially the 200 mgL-1 level, improved these traits. daily germination coefficient and mean germination time were higher about 15% and 65%, respectively, compared to the control treatment without salinity and in priming with gibberellin 200 mgL-1 compared to the control, they showed a decrease of about 8% and 42%, respectively. The catalase and ascorbate peroxidase enzymes activity in the treatment with control and 450 mM salinity compared to with gibberellin 200 mgL-1 and without salinity showed an increase of about 86 and 92%, respectively. The activities of peroxidase and superoxide dismutase enzymes in gibberellin 200 mgL-1 treatment showed a decrease of about 25% and 34%, respectively, compared to the control. Also, the alpha-amylase enzyme activity in priming with gibberellin 200 mgL-1 and without salinity compared to the the controland 450 mM salinity showed an increase of 89%, respectively. The results showed that seed treatment with different levels of gibberellin can reduce the harmful effects of salinity on some traits quinoa seedlings and improve seedling growth.

کلیدواژه‌ها [English]

  • Alpha-Amylase
  • Ascorbate Peroxidase
  • Catalase
  • Germination Indicators
  • Peroxidase
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126. DOI: 10.1016/S0076-6879(84)05016-3. (Journal)
Ait-El-Mokhtar, M., Baslam, M., Ben-Laouane, R., Anli, M., Boutasknit, A. and Mitsui, T. 2020. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Frontiers in Sustainable Food Systems, 4: 131. DOI:10.3389/fsufs.2020.00131. (Journal)
Ali, F., Bano, A., Hassan, T. U., Nazir, M., Khan, R. T. 2023. Plant growth promoting rhizobacteria induced modulation of physiological responses in rice under salt and drought stresses. Pakistan Journal of Botany, 55: 447–52. DOI:10.30848/PJB2023-2(23). (Journal)
Angeli, V., MiguelSilva, P., CrispimMassuela, D., Khan, M. W., Hamar, A., Khajehei, F., GraeffHonninger, S. and Piatti, C. 2020. Quinoa (Chenopodium quinoa Willd.): An Overview of the potentials of the ‘Golden Grain’ and socio-economic and environmental aspects of its cultivation and marketization. Journal Foods, 9(2): 216. DOI: 10.3390/foods9020216. (Journal)
Bailly, C., Benamer, A., Cornineau, F. and Come, D. 2000. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research, 10: 35-42. DOI:10.1017/S0960258500000040. (Journal)
Bejaoui, M.  1985. Intéractions Entre NaCl et Quelques Phytohormones Sur La Croissance Du Soja. Journal of Plant Physiology, 120: 95–110. DOI:10.1016/S0176-1617(85)80014-6. (Journal)
Brown, L. K., Wiersma, A. T. and Olson, E. L. 2018. Preharvest sprouting and α-amylase activity in soft winter wheat. Journal of Cereal Science, 79: 311–318. DOI: 10.1016/j.jcs.2017.11.016. (Journal)
Causin, H. F., Bordón, D. A. and Burrieza, H. 2020. Salinity tolerance mechanisms during germination and early seedling growth in Chenopodium quinoa Wild. genotypes with different sensitivity to saline stress. Environmental and Experimental Botany, 172: 103995. DOI: 10.1016/j.envexpbot.2020.103995. (Journal)
Chakraborty, K., Bishi, S. K., Goswami, N., Singh, A. L. and Zala. P. V. 2016. Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes. Environmental and Experimental Botany, 128: 79-90.  DOI: 10.1016/j.envexpbot.2016.05.001. (Journal)
  Duman, I. 2006. Effect of seed priming with PEG and K3PO4 on germination and seedling growth in lettuce. Pakistan Journal of Biological Sciences, 9: 923-928. DOI: 10.3923/pjbs.2006.923.928.  (Journal)
Ebrahimi, E., Moosavi, S. A., Siadat, S. A., Moallemi, N. and Sabaeian, M. 2023. Effect of seed priming on salinity tolerance of (Cassia fistula L.) at seed germination and seedling growth stages using digital image analysis. Iranian Journal of Seed Science and Technology, 11(4): 17-34. DOI: 10.22092/ijsst.2022.358170.1426. (In Persian) (Journal)
Eisvand, H. R. and Maddah Arefi, H. 2007. Effects of some plant growth regulators on the physiological quality of Bromus aged seed. Iranian Journal of Rangelands and Forest Plant Breeding and Genetic Research, 15(2): 159- 171. DOI: 10.22092/IJRFPBGR.2007.114961. (In Persian) (Journal)
Ellis, R. H. and Roberts, E. H. 1980. Seed physiology and seed quality in soybean. Advances in Legume Science. pp: 287-311. (Journal)
Farooq, M., Romdhane, L., Al Sulti, M. K. R. A., Rehman, A., AlBusaidi, W. M. and Lee, D.-J. (2020). Morphological, physiological and biochemical aspects of osmopriminginduced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206: 176-186. DOI: 10.1111/jac.12384. (Journal)
Fathi, G. H. and Esmailpour, B. 2010. Plant growth regulator, fundamental and application. Mashhad Jahade Daneshgahi Press. (In Persian) (Book)
Ghanbari, M., Mokhtassi-Bidgoli, A., Talebi-Siah Saran, P. and Pirani. H. 2019. Effect of deterioration on germinationVand enzymes activity in dry bean (Phaseolus vulgaris L.) under salinity stress condition. Environmental Stresses in Crop Sciences, 12: 585-594. DOI: 10.22077/escs.2018.1337.1275. (In Persian) (Journal)
Gholami, S., Dehaghi, M. A., Rezazadeh, A. and Naji, A. M. 2022a. Seed Germination and Physiological Responses of Quinoa to Selenium Priming under Drought Stress. Bragantia, 81: e0722. DOI: 10.1590/1678-4499.20210183. (Journal)
Gholami, S. H., Rostami, T., Ahmadi, K. and Bagheri, M. 2022b. The effect of different concentrations of salicylic acid on germination characteristics of two genotypes of quinoa (Chenopodium quinoa willd.) under salinity stress. Environmental Stresses in Crop Sciences, 15(2): 529-539. DOI: 10.22077/escs.2020.3257.1854. (In Persian) (Journal)
Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutase. I. Occurrence in higher plants. Journal of Plant Physiology, 59: 309-314. DOI: 10.1104/pp.59.2.309. (Journal)
Hameed, A., Ahmed, M. Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B. and Nielsen, B. L. 2021. Effects of salinity stress on chloroplast structure and function. Cells, 10(8): 2023. DOI: 10.3390/cells10082023. (Journal)
He, Y. Q., Cheng, J. P. and He, Y. 2019. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnology Journal, 17(2): 322-337. DOI: 10.1111/pbi.12979. (Journal)
Hemeda, H. M. and Klein, B.P. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55: 184-185. DOI: 10.1111/j.1365-2621. 1990.tb06048. x. (Journal)
Iqbal, H. and Chen Yaning, C. 2024. Redox priming could be an appropriate technique to minimize drought-induced adversities in quinoa. Frontiers in Plant Science,15: 1253677. DOI: 10.3389/fpls.2024.1253677. (Journal)
Jahantighi, M. and Roshandel, P. 2023. The effect of seed priming of Chenopodium quinoa L. var. Giza 1 with ascorbic acid on increasing salt tolerance. Iranian Journal of Seed Science and Research, 10(3): 81- 93. DOI: 10.22124/JMS.2023.7676. (In Persian) (Journal)
 
Jamali, S. and Sharifan, H., 2018. Investigation the effect of different Salinity levels on Yield and Yield components of Quinoa (Cv. Titicaca) under different irrigation regimes. Journal of Soil and Water Conservation, 25: 2. 251-266. DOI: 10.22069/JWSC.2018.13721.2841. (In Persian) (Journal)
Johnson, R. and Puthur, J. T. 2021. Seed priming as a cost-effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162: 247-257. DOI: 10.1016/j.plaphy.2021.02. (Journal)
Jovanović, S., Kukavica, B., Vidović, M., Morina, F. and Menckhof, L. 2018. Class III peroxidases: Functions, localization and redox regulation of isoenzymes. In: Gupta, D. J. and Palma, F. (Eds.)  Antioxidants and Antioxidant Enzymes in Higher Plants, Cham. pp: 269-300.
Kafi, M., Asadi, H. and Ganjeali, A. 2010. Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems. Agricultural Water Management, 97: 139-147. DOI: 10.1016/j.agwat.2009.08.022. (Journal)
Karmi, R., Ebrahimi, F., Balochi, H. R., Babaei-Zarch, M. J. 2019. Improvement of germination behavior and seedling characteristics of two varieties of quinoa (Chenopodium quinoa Willd) under the influence of salicylic acid and salt stress. Journal of Seed Research, 10(1): 52-66. (In Persian) (Journal)
Kaur, S., Gupta, A. K. and Kaur, N. 2000. Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regulation, 30: 61–70. DOI:10.1023/A:1006371219048. (Journal)
Khan, A., Shafi, M., Bakht, J., Anwar, S. and Khan, M. O. 2021. Effect of salinity (NaCl) and seed priming (CaCl2) on biochemical parameters and biological yield of wheat. Pakistan Journal of Botany, 53: 779–89. DOI:10.30848/PJB2021-3(12). (Journal)
Lien, D. T. P., Phuc, T. M., Phan Thi Bich Tram, P. T. B. and Toan, H. T. 2016. Effects of gibberellic acid on the antioxidant activity of soybean seeds (Glycine max L. Merr.) during germination. International Journal of Food Science and Nutrition, 1(5): 16-21. (Journal)
Li, J. Z., Li, M. Q., Han, Y. C., Sun, H. Z., Du, Y. X. and Zhao, Q. Z. 2019. The crucial role of gibberellic acid on germinationof drought-resistant upland rice. Biologia plantarum, 63: 529–535. DOI: 10.32615/bp.2019.049. (Journal)
Louis, N., Dhankher, O. P. and Puthur, J. T. 2023. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. Physiologia Plantarum, 175: 13881. DOI: 10.1111/ppl.13881. (Journal)
Maguire, J. D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2: 176-177. DOI: 10.2135/cropsci1962.0011183X000200020033x. (Journal)
Maharramov, A. M., Hasanova, U. A., Suleymanova, I. A., Osmanova, G. E. and Hajiyeva, N. E. 2019. The engineered nanoparticles in food chain: Potential toxicity and effects. SN Applied Sciences, 1(11): 1362. DOI: 10.1007/s42452-019-1412-5. (Journal)
Maleki, P., Bahrami, H. A., Saadat, S., Sharifi, F., Dehghany, F. and Salehi, M. 2018. Salinity threshold value of Quinoa (Chenopodium Quinoa Willd.) at various growth stages and the appropriate irrigation method by saline water. Communications in Soil Science and Plant Analysis, 49: 1815-1825. DOI: 10.1080/00103624.2018.1474917. (Journal)
Mamedi, A., Sharifzadeh, F. and Maali Amiri R. 2021. Evaluation of quinoa seed germination variability to temperature, drought and saline stress. Iranian Journal of Seed Science and Technology, 10(4): 57-67 DOI: 10.22092/ijsst.2021.353918.1388. (In Persian) (Journal)
Marković, M., Šoštarić, J., Kojić, A., Popović, B., Bubalo, A., Bošnjak, D. and Stanisavljević, A. 2022. Zinnia (Zinnia elegans L.) and periwinkle (Catharanthus roseus (L.) G. Don) responses to salinity stress. Water, 14(7): 1066. DOI: 10.3390/w14071066. (Journal)
Meftahizade, H. and Rahmati, Z. 2021. Evaluation of germination and growth characteristics of guar (Cyamopsis tetragonoloba L.) genotypes under salinity stress condition. Iranian Journal of Seed Science and Technology, 10(2): 97- 109. DOI: 10.22092/ijsst.2020.342298.1332. (In Persian) (Journal)
Mondal, S. and Bose, B. 2021. Seed Priming: An Interlinking Technology between Seeds, Seed Germination and Seedling Establishment. Plant Reproductive Ecology - Recent Advances, Delhi. (Book)
 
Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxides in Spanish chloroplasts. Plant Cell Physiology, 22: 867–880. DOI: 10.1093/OXFORDJOURNALS.PCP.A076232. (Journal)
Nazih, A., Baghour, M., Maatougui, A., Aboukhalid, K., Chiboub, B. and Bazile, D. 2024. Effect of Gibberellic Acid and Mechanical Scarification on the Germination and Seedling Stages of Chenopodium quinoa Willd under Salt Stress. Plants, 13: 1330. DOI: 10.3390/plants13101330. (Journal)
Omara, A. E. D., Hafez, E. M., Osman, H. S., Rashwan, E., El-Said, M. A. A. and Alharbi, K. 2022. Collaborative impact of Compost and beneficial rhizobacteria on soil properties, physiological attributes, and productivity of wheat subjected to deficit irrigation in salt affected soil. Plants, 11(7): 877. DOI: 10.3390/plants11070877. (Journal)
Omidi, H., Leyla, J. and Hasanali, N. 2014. Seeds of medicinal plants and crops. Natural Resources and Environment. Shahed University Press. (Book)
Ozden, E., Ermiş, S. and Demir, I. 2017. Seed priming increases germination and seedling quality in Antirrhinum, Dahlia, Impatiens, Salvia and Zinnia seeds. Journal of Ornamental plants, 7(3): 171-176. (Journal)
Padma, L., Basvaraju, G. V., Sarika, G. and Amrutha, N. 2013. Effect of Seed Treatments to Enhance Seed Quality of Papaya (Carica papaya L.) Cv. Surya. Global Journal of Biology, Agriculture and Health Sciences, 2: 221–225. (Journal)
Pakbaz, N., Omidi, H., Naghadi Badi, H. and Bostani, A. 2018. The effect of seed priming with nutritional elements and drought on growth characteristics of quinoa seedlings (Chenopodium quinoa willd) under drought stress conditions. Book of Abstracts of the 16th National Science Congress Agriculture and Plant Breeding. 5-7 February, Iran, Ahvaz. (Conference)
Paparella, S., Araújo, S. S. and Rossi, G.  2015. Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8): 1281-1293. DOI: 10.1007/s00299-015-1784-y. (Journal)
Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V. and Ferreira, I. C. F. R. 2019. Chemical and nutritional characteriza- tion of Chenopodium quinoa Willd (quinoa) grains: a good alternative to nutritious food. Food Chemistry, 280: 110-114. DOI: 10.1016/j.foodchem.2018.12.068. (Journal)
Pulvento, C. and Bazile, D. 2023. Worldwide evaluations of quinoa biodiversity and food security under climate change pressures: Advances and perspectives. Plants, 12(4): 868. DOI: 10.3390/plants12040868. (Journal)
Saadat, H. and Sedghi, M. 2024. The effect of priming on seed germination indices and antioxidant enzyme activity in chickpea seedlings (Cicer arietinum L.) under salinity stress. Iranian Journal of Seed Science and Research, 11(1): 15-29. DOI: 10.22124/jms.2024.8036. (In Persian) (Journal)
Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023a. The Effect of Priming with Different Levels of Chitosan on Physiological and Biochemical Traits in French Bean (Phaseolus vulgaris L.) Under Salinity Stress. Phant Production Technology, 14(2):75-89. DOI: 10.22084/PPT.2023.26100.2075. (In Persian) (Journal)
Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023b. Expression of gibberellin synthesis
genes and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iranian Journal of Plant Physiology, 13(4): 4715-4728. DOI: 10.30495/ijpp.2023.1978837.1460. (Journal)
Saadat, T., Sedghi, M., Gholipouri, A., Seyed Sharifi, R. and Sheykhbaglou, R. 2020. Effect of seed priming and aging on germination, biochemical traits and antioxidant enzyme gene expression in common bean (Phaseolus vulgaris l.). Iranian Journal of Seed Science and Research, 7(1): 1-13. DOI: 10.22124/JMS.2020.4267. (In Persian) (Journal)
Saadat, T., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023c. Effect of chitosan on germination
indices of common bean (Phaseolus vulgaris) (cv. Sedri) seeds under salt stress. Iranian Journal of Seed Research, 9(2): 151-162. DOI: 10.61186/yujs.9.2.151. (In Persian) (Journal)
Sairam, R. K., Rao, K. V. and Srivastava, G. C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyteconcentration. Plant Science, 163: 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9. (Journal)
 
Salah, S. M., Guan, Y. J. and Cao, D. D. 2015. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Scientific Reports, 5: 14278. DOI: 10.1038/srep14278. (Journal)
Salehi, M. and Dehghani, F. 2023. Evaluation the effect of salinity stress on the protein and micronutrient elements content of quinoa seeds. Crop Production Journal, 16(3): 1-16. DOI: 10.22069/EJCP.2024.20228.2509. (In Persian) (Journal)
Salehi, M., Soltani, V. and Dehghani, F. 2019. Effect of salt stress and seed priming methods on emergence and seedling characteristics of quinoa (Chenopodium quinoa Willd.). Environmental Stresses in Crop Sciences. 11(2): 381-391. DOI: 10.22077/escs.2017.595.1127. (In Persian) (Journal)
Sano, N., Lounifi, I., Cueff, G., Collet, B., Clément, G. and Balzergue, S. 2022. Multi-omics approaches unravel specific features of embryo and endosperm in rice seed germination. Frontiers in Plant Science, 9(13): 867263. DOI: 10.3389/fpls.2022.867263. (Journal)
Sehnal, K., Hosnedlova, B., Docekalova, M., Stankova, M., Uhlirova, D., Tothova, Z., Kepinska, M., Milnerowicz, H., Fernandez, C., Ruttkay-Nedecky, B. and Nguyen, H. V. 2019. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.). Nanomaterials, 9(11): 1550. DOI: 10.3390/nano9111550 (Journal)
Shi, P. and GU, M. 2020. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response salt stress. BMC Plant Biology, 20(1): 568. DOI: 10.1186/s12870-020-02753-1. (Journal)
Srinivasan, K., Saxena, S. and Singh, B. B. 1999. Osmo- and hydropriming of mustard seeds to improve vigour and some biochemical activities. Seed Science and Technology, 27(2): 785-789. (Journal)
Thabet, S. G. and Alqudah, A. M. 2023. New genetic insights into improving barley cope with salt stress via regulating mineral accumulation, cellular ion homeostasis, and membrane trafficking Environmental and Experimental Botany, 208: 105252. DOI: 10.1016/j.envexpbot.2023.105252. (Journal)
Waterworth, W. M., Bray, C. M. and West, C. E. 2019. Seeds and the Art of Genome Maintenance. Frontiers in Plant Science, 10: 706. DOI: 10.3389/fpls.2019.00706. (Journal)
Xiao, S., Liu, L., Wang, H., Li, D., Bai, Z., Zhang, Y., Sun, H., Zhang, K. and Li, C. 2019. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PloS ONE, 14: e0216575. DOI: 10.1371/journal.pone.0216575. (Journal)
Yasmeen, A. and Muhamma Imran, M. 2024. Growth promoters modulate the antioxidant system to mitigate water stress in quinoa. Pakistan Journal of Botany, 56(3): 853-862. (Journal)
 Zeid, I., M., Gharib, F. A. E. L., Ghazi, S. M. and Ahmed, E. Z. 2019. Promotive effect of ascorbic acid, gallic acid, selenium and nanoselenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. Journal Plant Physiology and Pathology, 7: 1-9. DOI: 10.4172/2329-955X.1000193. (Journal)
Zeng, F., Zheng, C., Ge, W., Gao, Y., Pan, X., Ye, X., Wu, X. and Sun, Y. 2024. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. Frontiers in Plant Science, 14: 1322986. DOI: 10.3389/fpls.2023.1322986. (Journal)
Zulfiqar, F., Chen, J., Finnegan, P. M., Younis, A., Nafees, M., Zorrig, W. and Hamed, K. B. 2021. Application of Trehalose and Salicylic Acid Mitigates Drought Stress in Sweet Basil and Improves Plant Growth. Plants Journal, 10:  35-52. DOI: 10.3390/plants10061078. (Journal)