واکنش جوانه‌زنی برخی گونه‌های علف‌هرز تاج‌خروس (Amaranthus sp) در پاسخ به دما و نور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. دانشجوی کارشناسی ارشد رشته علوم علف‌های هرز، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار، گروه زراعت دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استاد، گروه زراعت دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانشیار، بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

5 اتحاد کشاورزی و نوآوری غذایی کوئینزلند، دانشگاه کوئینزلند ، توومبا ، کوئینزلند ، استرالیا

10.22124/jms.2024.8789

چکیده

این آزمایش دوساله با هدف بررسی دماهای ثابت و نور بر جوانه‌زنی بذر گونه‌های تاج‌خروس سفید (Amaranthus albus)، تاج‌خروس دورگ (Amaranthus chlorostachys)، تاج‌خروس ریشه‌قرمز (Amaranthus retroflexus) و تاج‌خروس سبزرنگ (Amaranthus viridis) در سال‌های 1397 و 1398 در دانشگاه علوم کشاورزی و منابع طبیعی گرگان انجام شد. در سال اول، تغییرات جوانه‌زنی گونه‌های مختلف تاج‌خروس به صورت ماهانه طی پس‌رسی به مدت 12 ماه، مورد بررسی قرار گرفت. در ماه پنجم پس‌رسی، جوانه‌زنی بذر گونه‌های مختلف تاج‌خروس در دماهای 10، 15، 20، 25، 30، 35، 40 و 45 سانتی‌گراد در شرایط نور و تاریکی بررسی شد. در سال دوم، جوانه‌زنی بذر گونه‌های مذکور در دماهای 10، 15، 20، 25، 30 و 35 درجه سانتی‌گراد در چهار شرایط نور همراه با اسیدجیبرلیک، نور بدون اسیدجیبرلیک، تاریکی همراه با اسیدجیبرلیک و تاریکی بدون اسیدجیبرلیک مورد بررسی قرار گرفت. درصد جوانه‌زنی گونه‌های مختلف تاج‌خروس طی دوره پس‌رسی افزایش یافت؛ اگرچه روند آن در گونه‌های مختلف، متفاوت بود. کاربرد اسیدجیبرلیک نیز سبب بهبود جوانه‌زنی شد. بنابراین کمون بذرهای گونه‌های مذکور، فیزیولوژیک غیرعمیق می‌باشد. با افزایش دما به 30 تا 35 درجه سانتی‌گراد، درصد جوانه‌زنی گونه‌های مختلف تاج‌خروس افزایش یافت و اسیدجیبرلیک نیز سبب بهبود درصد و سرعت جوانه‌زنی آنها گردید. همچنین مصرف اسیدجیبرلیک سبب کاهش دمای پایه جوانه‌زنی شد. چنین واکنش‌هایی به نور و دما، تضمین کننده جوانه‌زنی این گیاهان در بهار و در سطح خاک می‌باشد. کاهش دمای پایه جوانه‌زنی نیز ممکن است سبب جوانه‌زنی بعضی از گونه‌های تاج‌خروس قبل از فصل بهار شود. درصد جوانه‌زنی اندک به‌ویژه در دماهای پایین، از نظر زیستی بسیار مهم است؛ زیرا ممکن است جمعیت قابل توجهی از علف‌های هرز در مزرعه ظاهر و سبب بروز مشکلات برای کشاورزان شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Germination response of some Amaranthus species to temperature and light

نویسندگان [English]

  • Ladan Zinati 1
  • Asieh Siahmarguee 2
  • Farshid Ghaderi-Far 3
  • Masomeh Yones-Abadi 4
  • Bhagirath Singh Chauhan 5
1 MSc student of Weed Science, Department of Agronomy, Faculty of Crop Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associated Professor, Department of Agronomy, Faculty of Crop Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Professor, Department of Agronomy, Faculty of Crop Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Associated Professor, Department of Plant Protection Research, Golestan Agricultural and Natural Recourses Research and Education Center, Organization of Agricultural Research, Education and Extension, Gorgan, Iran
5 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Toowoomba, Queensland, Australia
چکیده [English]

This experiment was conducted to investigate the effects of constant temperatures and light on seed germination of white pigweed (Amaranthus albus), smooth pigweed (Amaranthus chlorostachys), redroot pigweed (Amaranthus retroflexus), and green amaranth (Amaranthus viridis) in 2018 and 2019 at Gorgan University of Agricultural Sciences and Natural Resources. In the first year, germination of different species of Amaranthus were studied monthly over a 12-month after-ripening period. In the fifth month of after-ripening, seed germination of different Amaranthus species was studied at temperatures of 10, 15, 20, 25, 30, 35, 40, and 45 °C under light and darkness conditions. In the second year, seed germination of the mentioned species was investigated at temperatures of 10, 15, 20, 25, 30 and 35 °C in four conditions: light with gibberellic acid, light without gibberellic acid, darkness with gibberellic acid and darkness without gibberellic acid. The germination percentage of different species of Amaranthus increased during the after-ripening period; although the process were varied in different species. The application of gibberellic acid also improved germination. Therefore, seed dormancy of the mentioned species is non deep physiologically. Germination percentage of different species of Amaranthus increased in temperatures of 30-35 °C, and gibberellic acid also improved their germination percentage and rate. Also, the use of gibberellic acid reduced base temperature of germination. Such responses to light and temperature ensure the germination of these plants in spring and on the soil surface. A decrease in the base temperature of germination may also cause the germination of some species of Amaranthus before spring. Low germination percentages, especially at low temperatures, are biologically important because small but significant populations of weeds may appear in the field and cause problems for farmers.

کلیدواژه‌ها [English]

  • After-ripening
  • Cardinal germination temperatures
  • Germination rate
  • Gibberellic acid
  • Physiological dormancy
  • Segmented model
Adhikaryand, P. and Tarai, P. 2013. Effects of temperature and gibberellic acid (GA3) on seed germination of Vicia sativa, Chenopodium album and Physalis minima. International Journal of Agriculture, Environment & Biotechnology Citation, 6(4): 571-574. (Journal) doi:10.5958/j.2230-732X.6.4.042.
 
Aguyoh, J.N. and Masiunas, J.B. 2003. Interference of redroot pigweed (Amaranthus retroflexus) with snap beans. Weed Science, 51: 202–207. (Journal) doi: 10.1614/0043-1745(2003)051[0202: IORPAR]2.0.CO;2
 
Akbari Gelevardi, A., Siahmarguee, A., Ghaderi-Far, F., Gherekhloo, J. 2021. The effect of environmental and management factors on seed germination and seedling emergence of Asian spiderflower (Cleome viscosa L.). Weed Research, 61(5), 350-359. (Journal)  doi:10.1111/wre.12493
 
Assad, R., Reshi, Z.A., Jan, S., Rashid, I. 2017. Biology of Amaranths. The Botanical Review, 83(4):382-436. (Journal) doi: 10.1007/s12229-017-9194-1
 
Aufhammer, W., Kaul, H.P., Kruse, M., Lee, J.H. and Schwesig, D. 1994. Effects of sowing depth and soil conditions on emergence of amaranth and quinoa. European Journal of Agronomy, 3: 205–210. (Journal) doi:10.1626/jcs.84.17ISBN: 0011-1848
 
Azadi, R. 2013. Amaranthus species in Iran and their utility values. 3th National Conference on Medicinal Plants, Amol, Iran. (In Persian)(Conference)
 
Baskin, J.M. and Baskin, C.C. 2004. A classification system for seed dormancy. Seed Science Research, 14(1):1-16. (Journal) doi: 10.1079/SSR2003150
 
Benvenuti, S. and Macchia, M. 1995. Hypoxia effect on buried weed seed germination. Weed Research, 35: 343-351. (Journal) doi:10.1111/j.1365-3180.1995.tb01629.x
 
Bewley, J.D. and Black, M. 1994. Seeds: Physiology of Development and Germination. 2nd Ed. New York: Plennum. Pp. 273-290. (Book)
 
Bicalho, E.M., Soares-da-Mota, L.A. and Garcia, Q.S. 2018. Temperature and light requirements for germination of species of Velloziaceae from diff erent Brazilian rocky outcrops. Acta Botanica Brasilica, 32(2): 240-246. (Journal) doi: 10.1590/0102-33062017abb0310
 
Budin, J.T., Breen, W.M. and Patnum, D.H. 1996. Some compositional properties of seeds and oils of eight Amaranthus species. Journal of the American Oil Chemists’ Society, 73: 475–481. (Journal) doi: 10.1007/BF02523922
 
Cadman, C.S.C., Toorop, P.E., Hilhorst, H.W.M. and Finch-Savage, W.E. 2006. Gene expression profiles of Arabidopsis cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. The Plant Journal, 46: 805–822. (Journal) doi: 10.1111/j.1365-313X.2006.02738.x.
 
Chauhan, B.S. and Johnson, D.E. 2009. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): troublesome weeds of direct-seeded rice. Weed Science, 57:379–85. (Journal) doi:10.1614/WS-08-179.1
 
Christenhusz, M.J.M. and Byng, J.W. 2016. The number of known plants species in the world and its annual increase. Phytotaxa Magnolia Press. 261(3): 201–217. (Journal)  doi:10.11646/phytotaxa.261.3.1
 
Costea, F.J. and Tardif, M. 2003. The biology of Canadian weeds. 126. Amaranthus albus L., A. blitoides S. Watson and A. blitum L. Canadian Journal of Plant Science, 83(4): 1039-1066. (Journal) doi:10.4141/P02-056
 
Cristaudo, A., Gresta, F., Luciani, F. and Restuccia, A. 2006.  Effects of after-harvest period and environmental factors on seed dormancy of Amaranthus species. Weed Research, 47:  327–334. (Journal) doi:10.1111/j.1365-3180.2007.00574.x
Das, S. 2016. Amaranths: The Crop of Great Prospect. In Amaranthus: A Promising Crop of Future (pp. 13– 48). Springer Singapore. (Book)
 
Deihimfard, R., Nazari, Sh. and Aboutalbian, M.A. 2016. Modelling germination pattern of two Pigweed ecotypes in response to temperature. Iranian Plant Protection Research, 30(2): 328-336. (In Persian)(Journal) doi:10.22067/JPP.V30I2.46562
 
Derkx, M.P.M. and Karssen, C.M. 1993. Effects of light and temperature on seed dormancy and gibberellin-stimulated germination in Arabidopsis thaliana: studies with gibbereilin-deficient and -insensitive mutants.  Physiologia Plantarum, 89: 360-368. (Journal) doi:10.1111/j.1399-3054.1993.tb00167.x
 
Diayanat, M. 2018. Effect of temperature and drought stress on germination of slender Amaranth (Amaranthus viridis L.) and Prostrate Pigweed (Amaranthus blitoides S. Watson) seeds. Iranian Plant Protection Research, 31(4): 690-699. (In Persian) (Journal) doi:10.22067/JPP.V31I4.61569
 
Donazzolo, J., Possenti, J.C., Guollo, K., Moeses Andrigo Danner, M.D. and Belle, I.C. 2017. Germination of Amaranth seeds under influence of light, substrate and temperature.  Revista de Ciências Agroveterinárias, Lages, 16(2):190-194. (Journal) doi:10.1111/j.1365-2621.1989.tb04702.x
 
Ebrahimi, E. and Eslami, S.V. 2012. Effect of environmental factors on seed germination and seedling emergence of invasive Ceratocarpus arenarius. Weed Research, (52)1: 50–59. (Journal) doi:10.1111/j.1365-3180.2011.00896.x
 
Egley, G.H. 1989. Some effects of nitrate-treated soil upon the sensitivity of buried redroot pigweed (A. retroflexus L.) seeds to ethylene, temperature, light and carbon dioxide. Plant Cell and Environment, 12: 581–588. (Journal) doi:10.1111/J.1365-3040.1989.TB02131.X
 
Enayati, V., Esfandiari, E., Pourmohammad, A., Haj Mohammadnia Ghalibaf, K. 2019. Evaluation of different methods in seed dormancy breaking and germination of redroot pigweed (Amaranthus retroflexus). Iranian Journal of Seed Research, 5(2): 129-137. (In Persian) (Journal) doi:10.29252/yujs.5.2.129
 
Faccini, D. and Vitta, J.I. 2005. Germination characteristics of A. quitensis as affected by seed production date and duration of burial. Weed Research, 45: 371–378. (Journal) doi: 10.1111/j.1365-3180.2005.00469.x
 
Felippe, G.M. 1980. Germination of light-sensitive seeds of Cucumis anguria and Rumex obtusifolius: Effects of temperature. New Phytologist, 84: 439-448. (Journal) doi:10.1111/j.1469-8137.1980.tb04551.x
 
Finch-Savage W.E. and Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytologist, 171: 501-523. (Journal) doi:10.1111/j.1469-8137.2006.01787.x
 
Ghaderi-Far, F., Azimmohsen, M., Bagheri, S.H.R. 2024. Evaluation of the generalized linear model to the germination percentage data and its c omparison with the square root transformation. Iranian Journal of Seed Research, 2024, 10(2): 37-48. doi: 10.61186/yujs.10.2.37
 
Heap, I. 2024. The International Survey of Herbicide Resistant Weeds. Online. Internet. Wednesday, December 25, Available at www.weedscience.org.
 
Jaganathan, G.K., Dalrymple, S.E. and Liu, B. 2015. Towards an understanding of factors controlling seed bank composition and longevity in the alpine environment. The Botanical Review, 81: 70-103. (Journal) doi:10.1007/s12229-014-9150-2
 
Jha, P., Norsworthy, J.K. and Garcia, J. 2014. Depletion of an artificial seed bank of Palmer amaranth (Amaranthus palmeri) over four years of burial. American Journal of Plant Sciences, 5: 1599–1606. (Journal) doi:10.4236/ajps.2014.511173
 
Jha, P., Norsworthy, J.K., Riley, M.B. and Bridges, W. 2010. Annual changes in temperature and light requirements for germination of Palmer amaranth (Amaranthus palmeri) seeds retrieved from soil. Weed Science, 58: 426–32. (Journal)  doi:10.1614/WS-D-09-00038.1
 
Kepczynski, J. and Sznigir. P. 2014. Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels. Acta Physiologiae Plantarum, 36:1463–1472. (Journal) doi: 10.1007/s11738-014-1524-x
 
Khan, A.M., Mobli, A., Werth, J.A. and Chauhan, B.S. 2022.  Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: Two emerging weeds in Australian cotton and other summer crops. PLoS ONE, 17(2): e0263798. (Journal) doi:10.1371/journal.pone.0263798
 
Leon, R.G. and Owen, M.D.K. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Science, 54(6):1037-1044. (Journal) doi:10.1614/WS-06-009.1
 
Loddo, D., Ghaderi-Far, F., Rastegar, Z., and Masin R. 2017. Base temperatures for germination of selected weed species in Iran. Plant Protectection Science, 53. 1-7. (Journal) doi:10.17221/92/2016-PPS
Massinga, R.A. Currie., R.S., Horak, M.J. and Boyer, J. 2001. Interference of palmer amaranth in corn. Weed Science, 49: 202–208. (Journal) doi: 10.1614/0043-1745(2001)049[0202:IOPAIC]2.0.CO;2
 
Milberg, P., Andersson, L., and Noronha, A., 1996. Seed germination after short–duration light exposure: implications for the photo-control of weeds. Journal of Applied Ecology, 33: 1469-1478. (Journal)  doi:10.1046/j.1365-3180.1997.d01-16.x
 
Monte, J.P. and Tarquis, A.M. 1997. The role of temperature in the seed germination of two species of the Solanum nigrum complex. Journal of Experimental Botany, 48(3): 2087-2093. (Journal) doi:10.1093/jxb/48.12.2087
 
Natural Resources Conservation Service PLANTS Database. USDA. Retrieved 7 January 2016.
Norsworthy, J.K. and Oliveira, M.J. 2007. Light and temperature requirements for Common Cocklebur (Xanthium strumarium) germination during after-ripening under field conditions. Weed Science, 55:227–234. (Journal) doi: 10.1614/WS-06-184
 
Qiu J., Bai Y., Fu Y.B., and Wilmshurst J.F. 2010. Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian prairie. Environmental and Experimental Botany, 67: 479–486. (Journal)  doi:10.1016/j.envexpbot.2009.09.002
 
Randall, R.P. 2007. The global compendium of weeds (http://www.hear.org/gcw/). AgWest and the Hawaiian Ecosystems at Risk (HEAR) project.
 
Rodríguez-Gacio, M.C., Matilla-Vázquez, M.A. and Matilla, A.J. 2009. Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signaling and Behavior, 4: 1035–1049. (Journal) doi: 10.4161/psb.4.11.9902
Sellers, B.A., Smeda, R.J., Johnson, W.G. and Ellersiek, M.R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Science, 51(3): 329-334. (Journal) doi: 10.1614/0043-1745(2003)051[0329:CGOSAS]2.0.CO;2
 
Serrano-Bernardo, F., Rosùa, J. and  Díaz-Miguel, M. 2007. Light and temperature effects on seed germination of four native species of Mediterranean high mountains (Spain). Phyton-International Journal of Experimental Botany, 76(1):27-38. (Journal) doi:10.32604/phyton.2007.76.027
 
Singh, G. and Kumar, J. 2019. Studies on underutilized weeds of family Amaranthaceae used as edibles by the Munda tribe of Jharkhand, India. Annals of Plant Sciences, 8(2):3495-3498. (Journal) doi:10.21746/aps.2018.8.2.1
 
Soltani, A., Galeshi, S., Zenali, E., and Latifi, N., 2002. Germination seed reserve utilization and growth of chickpea as affected by salinity and seed size. Seed Science and Technology, 30(1):51-60. (Journal)
 
Soltani, E., Ghaderi-Far, F., Baskin, C.C. and Baskin, J.M. 2015. Problems with using mean germination time to calculate rate of seed germination. Australian Journal of Botany, 63, 631-635. (Journal) doi: 10.1071/BT15133
 
Steckel, L.E., Sprague, C.L., Stoller, E.W. and Wax, L.M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Science, 52: 217–221. (Journal) doi: 10.1614/WS-03-012R
 
Tang, D.S., Hamayun, M., Khan, A.L., Jan, A., Nawaz, Y., Irshad, M., Na, Y.E. and Lee, I.J. 2012. Exposure to red light, temperature and exogenous gibberellins influenced germination of some winter weeds.  African Journal of Biotechnology, 11(2): 273-279. (Journal) doi:10.5897/AJB11.2272
 
Taylorson, R.B. and Hendricks, S.B. 1972. Interactions of light and a temperature shift on seed germination. Plant Physiology, 49(2):127-130. (Journal) doi: 10.1104/pp.49.2.127
 
Telewski, F.W. and Zeevaart, J.A.D. 2002. The 120-years period for Dr. Beal’s seed viability experiment. American journal of Botany, 89: 264–270. (Journal) doi:10.3732/ajb.89.8.1285
 
Thomas, W.E., Burke, I.C., Spears, J.F., Wilcut, J.W. 2006. Influence of environmental factors on slender amaranth (Amaranthus viridis) germination. Weed Science, 54:316–20. (Journal) doi:10.1614/WS-05-54.2.316
 
Tolloo Hafezian Awal, M., Ghaderi-Far, F., Sadeghipour, H., Siamarguee, A., Fadaee, F., Torab, B. 2019. Determination of seed dormancy of Silybum marianum L. Gaertn. seeds: Effects of afterripening and gibberellic acid treatments at different temperatures. Crop Production, 12(2):171-186. (Journal) doi: 10.22069/EJCP.2019.16404.2222
 
USDA, NRCS. 2010. The plants database (http://plants.usda.gov). National plant data center, Baton Rouge: 70,874–4490.
 
Waselkov, K., Boleda, A.S. and Olsen, K.M.  2018. A phylogeny of the genus Amaranthus (Amaranthaceae), based on several low-copy nuclear loci and chloroplast regions. Systematic Botany, 43(2): 439-458. (Journal)  do: 10.1600/036364418X697193
 
Weaver, S.E. and McWilliams, E.L. 1980. The biology of Canadian weeds. 44. Amaranthus retroflexus L., Amaranthus powelli S.Wats and Amaranthus hybridus L. Canadian Journal of Plant Science, 60: 1215–1234. (Journal) doi: 10.4141/cjps80-175
 
Webb, D.M., Smith, D.W. and Schulz-Schaffer, J. 1987. Amaranth seedling emergence as affected by seedling depth and temperature on a thermogradient plate. Agronomy Journal, 79: 23–26. (Journal) doi: 10.1016/S1161-0301(14)80084-1
Yang, L.E., Peng,s D.L., Li, Z.M., Huang, L., Yang, J., and Sun, H. 2020. Cold stratification, temperature, light, GA3, and KNO3 effects on seed germination of Primula beesiana from Yunnan, China. Plant Diversity, 42(3): 168-173(Journal) doi:10.1016/j.pld.2020.01.003