اثر باکتری بذرزاد بیماریزای Xanthomonas phaseoli pv. phaseoli و غیر بیماریزای Pantoea agglomerans با قابلیت تولید اکسین و بیوفیلم بر ویژگی‌های کیفی بذر لوبیا

نویسندگان

1 دانشیار پژوهش، موسسه تحقیقات ثبت و گواهی بذر و نهال، سازمان تحقیقات، ترویج و آموزش کاورزی، تهران، ایران

2 استادیار پژوهش، موسسه تحقیقات ثبت و گواهی بذر و نهال، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

10.22124/jms.2024.8661

چکیده

بذر با کیفیت یکی از پیش نیازهای اصلی تولید محصولات کشاورزی با بازدهی مناسب است. تحقیقات نشان داده از بین عوامل زیستی، باکتریها می­توانند نقش اساسی در تغییر وضعیف کیفی بذر ایفا نمایند. اثر این میکروارگانیسم­ها به صورت تعاملات مثبت، خنثی یا خسارت­زا در گیاهان گزارش شده است. باکتری Xanthomonas phaseoli pv. phaseoli (Xpp) یکی از عوامل بذرزاد و بیماریزای مهم در لوبیا است که با وجود اهمیت و خسارتزا بودن آن در مزرعه، تحقیقات چندانی در رابطه با اثرات مستقیم این باکتری بر ویژگی­های کیفی بذر و قدرت رویشی گیاهچه­های لوبیا، انجام نشده است. باکتری Pantoea agglomerans (Pa) هم به عنوان یک باکتری بذرزاد خاص با دامنه متنوعی از سویه­های بیماریزا و غیر بیماریزا شناخته شده که اثرات آن بر بذر لوبیا همچنان ناشناخته است. تحقیق حاضر پس از جداسازی دو سویه S68 (Pa) و SM3(Xpp) از بذر لوبیا رقم یاقوت و تعیین پتانسیل این باکتریها در بیماریزایی، تولید هورمون ایندول استیک اسید (IAA)، بیوفیلم، حلالیت فسفات و فیتاز، به بررسی اثر این دو باکتری بذرزاد مهم بر ویژگی­های کیفی بذر لوبیا پرداخته است. سویهS68 (Pa)  برخلاف سویه SM3(Xpp) قادر به ایجاد علائم بیماری در گیاه لوبیا نبود و توانایی تولید IAA و بیوفیلم آن به ترتیب حدود دو تا سه برابر سویه بیماریزای SM3(Xpp) تعیین شد. همچنین این باکتری دارای توانایی حلالیت فسفات و فیتاز مثبت تشخیص داده شد و اثر معنی­داری در بهبود ویژگی­های رشدی گیاهچه، افزایش وزن خشک، طول ریشه ­و گیاهچه و قدرت جوانه­زنی بذرهای لوبیا داشته است. بذرهای تیمار شده با باکتری بیماریزای SM3(Xpp) برخلاف انتظار تفاوت معنی­داری با بذرهای سالم نداشت و به نظر می رسد تا زمان استقرار کامل باکتری در بافت ساقه و برگ، خسارت مشخصی بر بذر حامل آلودگی وارد نمی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of pathogenic Xanthomonas phaseoli pv. phaseoli and non-pathogenic Pantoea agglomerans as auxin and biofilm-producing bacteria on bean seeds quality

نویسندگان [English]

  • Kobra Moslemkhani 1
  • Bita Oskouei, 2
1 Research Associate professor, Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Research Assistant professor, Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Quality seed is essential prerequisite for successful and economical production of agricultural crops. Researches exhibited that bacteria can play an essential role in seed quality as biological agents. The effect of these microorganisms has been reported as positive, neutral or harmful interactions in plants. Xanthomonas phaseoli pv. phaseoli (Xpp) is pathogenic bacteria that established on bean seeds; despite its importance, no more research has been conducted to determine the direct effects of this bacterium on the seed quality, germination and vigor. The effect of Pantoea agglomerans (Pa) as a mysterious seed-borne microorganism with a diverse range of pathogenic and non-pathogenic strains, on bean seeds weren’t investigated. In this study two strains S68(Pa) and SM3 (Xpp) were isolated from the bean seeds (Yaghout cultivar). In addition to their effects on seed quality, the potential of both bacteria in pathogenicity, production of indole acetic acid (IAA) and biofilm, phosphate solubility and phytase were studied. Unlike SM3(Xpp) strain, S68(Pa) was non-pathogenic and can't cause disease in bean. It was determined that the abilities of S68(Pa) to produce IAA and biofilm was two and three times more than the SM3(Xpp) strain, respectively. The S68(Pa) strain also, can solubilize phosphate and produce phytase. Seed treatment with S68(Pa) had a significant effect on improving the growth characteristics of seedlings, increasing dry weight, root and seedling length, germination and bean seeds vigor. Contrary to our hypothesis, the seed quality index in treated seeds with pathogenic SM3(Xpp) weren’t  significantly different from the healthy seeds. It seems disease damage after full establishment of pathogen in the stem and leaf tissue can be appeared.

کلیدواژه‌ها [English]

  • Bacteria
  • Growth promoter
  • Pathogen؛ Seed borne
Ahmad, E., Sharma, P.K. and Khan, M.S. 2022. IAA biosynthesis in bacteria and its role in plant-microbe interaction for drought stress management. In: Vaishnav, A., Arya, S., and Choudhary, D. (Eds.) Plant stress mitigators. Singapore: Springer nature, pp: 235-258. (Book)
Anonymous, 2018. ISTA Handbook on Seedling Evaluation. International Seed Testing Associations. (Book)
Anonymous, 2024. International Rules for Seed Testing. International Seed Testing Associations. (Book)
Ansari, F.A., Ahmad, I., Pichtel, J. and Husain, F.M. 2024. Pantoea agglomerans FAP10: A novel biofilm-producing PGPR strain improves wheat growth and soil resilience under salinity stress. Environmental and Experimental Botany, 222: 105759. doi:10.1016/j.envexpbot.2024.105759 (Journal)
Audy, P., Laroche, A., Saindon, G., Huang, H.C. and Gilbertson, R.L. 1994. Detection of the bean common blight bacteria, Xanthomonas campestris pv. phaseoli and X. c. pv. phaseoli var. fuscans, using the polymerase chain reaction. Phytopathology, 84: 1185-1192. doi: 10.1094/Phyto-84-1185. (Journal)
Basson, A., Flemming, L.A. and Chenia, H.Y. 2008. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial ecology, 55: 1-14. doi: 10.1007/s00248-007-9245-y. (Journal)
Bent, E., Tuzun, S., Chanway, C.P. and Eneback, S. 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Canadian Journal of Microbiology, 47:793-800. doi: 10.1139/w01-080. (Journal)
Bonini, P., Rouphael, Y., Miras-Moreno, B., Lee, B., Cardarelli, M., Erice, G., Cirino, V., Lucini, L. and Colla, G. 2020. A microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary metabolism. Frontiers in Plant Science, 11: 567388. doi:10.3389/fpls.2020.567388 .(Journal)
Cao, H.Y. 2010. Seed transmission of Pantoea agglomerans, causal agent of dry stalk rot in maize. Beijing, Chinese Academy of Agricultural Sciences. 31-36. doi:10.3724/SP.J.1011.2011.00353. (Journal)
Castagno, L.N., Estrella, M.J., Sannazzaro, A.I., Grassano, A.E., & Ruiz, O.A. 2011. Phosphate‐ olubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). Journal of applied microbiology, 110(5): 1151-1165. doi: 10.1111/j.1365-2672.2011.04968.x. (Journal)
Danhorn, T. and Fuqua, C. 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61: 401-422. doi: 10.1146/annurev.micro.61.080706.093316. (Journal)
Darrasse, A., Bureau, C., Samson, R., Morris, C.E. and Jacques, M.A. 2007. Contamination of bean seeds by Xanthomonas axonopodis pv. phaseoli associated with low bacterial densities in the phyllosphere under field and greenhouse conditions. European Journal of Plant Pathology, 119: 203-215. doi:10.1007/s10658-007-9164-2. (Journal)
Duca, D., Lorv, J., Patten, C.L., Rose, D. and Glick, B.R. 2014. Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek, 106: 85-125. doi: 10.1007/s10482-013-0095-y. (Journal)
Dutkiewicz, J., Mackiewicz, B., Lemieszek, M.K., Marcin, G. and Milanowski, J. 2016. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine, 23(2): 206– 22. doi: 10.5604/12321966.1203879.  (Journal)
Feng, Y.J., Shen, D.L. and Song, W. 2010. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and afects allocations of host photosynthates. Journal of Applied Microbiology, 100(5): 938–945. doi: 10.1111/j.1365-2672.2006.02843.x. (Journal)
Ghaderi-Far, F., and Soltani, A. 2014. Seed testing and control. Publications University of Mashhad. 200 pp. (in Persian) (Book)
Gilbertson, R.L., O’Leary, M., Agarkova, I.V., and Vidaver, A.K. 2017. Detection of Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans in Common Bean Seeds. In: Fatmi, M., Walcott, R.R., and Schaad, N.W. (Eds.) Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material, Second Edition. The American Phytopathological Society, pp: 63-71. (Book)
Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G. and Soppe, W., 2012. Molecular mechanisms of seed dormancy. Plant Cell Environ, 35: 1769–1786. doi:10.1111/j.1365-3040.2012.02542.x. (Journal)
Gupta, R.C., Seth, M., and Bhaduri, A.P. 2017. Determinants of maize seed income and adoption of foundation seed production: evidence from palpa district of Nepal. Agriculture and Food Security, 6(1), 41. doi:10. 1186/s40066-017-0119-3. (Journal)
Guttenplan, S.B. and Kearns, D.B. 2013. Regulation of flagellar motility during biofilm formation.
FEMS Microbiology Reviews, 37: 849–71. doi: 10.1111/1574-6976.12018. (Journal)
Haque, M.M., Mosharaf, M.K., Khatun, M., Haque, M.A., Biswas, M.S., Islam, M.S. and Siddiquee, M.A. 2020. Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Frontiers in Microbiology, 11, 542053. doi: 10.3389/fmicb.2020.542053. (Journal)
Harding, M., Nadworny, P., Buziak, B., Omar, A., Daniels, G. and Feng, J. 2019. Improved methods for treatment of hytopathogenic biofilms: metallic compounds as anti-bacterial coatings and fungicide tank-mix partners. Molecules, 24: 2312. doi: 10.3390/molecules24122312. (Journal)
Hentrich, M., Boettcher, C. and Duchting, P., 2013. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. The Plant Journal, 74: 626–637. doi: 10.1111/tpj.12152. (Journal)
Jacques, M.A., Josi, K., Darrasse, A. and Samson, R. 2005. Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans. Applied and Environmental Microbiology, 71(4): 2008–2015. doi:10.1128/AEM.71.4.2008-2015.2005. (Journal)
Joosen, R.V., Kodde, J., Willems, L.A., Ligterink, W., van der Plas, L.H., and Hilhorst, H.W. 2010. Germinator: a software package for high‐throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Journal, 62: 148-15. doi:10.1111/j.1365-313X.2009.04116.x. (Journal)
Jorquera, M., Martínez, O.S.C.A.R., Maruyama, F., Marschner, P. and de la Luz Mora, M. 2008. Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes and environments, 23(3): 182-191. doi:10.1264/jsme2.23.182 (Journal)
Kefela, T., Gachomo, E.W. and Kotchoni, S.O. 2015. Paenibacillus polymyxa, Bacillus licheniformis and Bradyrhizobium japonicum IRAT FA3 promote faster seed germination rate, growth and disease resistance under pathogenic pressure. Journal of Plant Biochemistry and Biotechnology, 3:1. doi:10.4172/2329-9029.10001 45 . (Journal)
Khodakaramian, G., Gholamalizadeh, R. and Ebadi, A.A. 2020. Pantoea ananatis, a rice seed germination stimulator and growth promoting bacterium. Book of Abstracts of the 22th Iranian Plant Protection Congress, 27- 30 August. (in Persian) (Conference)
Lane, D.J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt, E. and Goodfellow, M. (Eds.) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175 (Book)
Lorenzi, A.S., Bonatelli, M.L., Chia, M.A., Peressim, L. and Quecine, M.C. 2022. Opposite sides of Pantoea agglomerans and its associated commercial outlook. Microorganisms, 10: 2072. doi:10.3390/microorganisms10102072. (Journal)
Luziatelli, F., Ficca, A.G., Cardarelli, M., Melini, F., Cavalieri, A., and Ruzzi, M. 2020. Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth-promotion and tolerance to heavy metals. Microorganisms, 8(2): 153. doi: 10.3390/microorganisms8020153. (Journal)
Malboobi, M.A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S. and Yakhchali, B. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World. Journal of Microbiology and Biotechnology, 25: 1471–1477. doi: 10.1007/s11274-009-0037-z. (Journal)
Medrano, E.G. and Bell, A.A. 2010. Role of Pantoea agglomerans in opportunistic bacterial seed and boll rot of cotton (Gossypium hirsutum) grown in the field. Journal of Applied Microbiology, 102(1): 134–143. doi: 10.1111/j.1365-2672.2006.03055.x. (Journal)
Miransari, M. and Smith, D.L. 2014. Plant hormones and seed germination. Environmental and Experimental Botany, 99: 110-121. doi:10.1016/j.envexpbot.2013.11.005. (Journal)
Nadarasah, G., and Stavrinides, J. 2014. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiology, 160(3): 602-615. doi:10.1099/mic.0.073452-0. (Journal)
Patel, K.J., Singh, A.K., Nareshkumar, G. and Archana, G. 2010. Organic-acid-producing, phytate- ineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Applied Soil Ecology, 44(3): 252-261. doi:10.1016/j.apsoil.2010.01.002.  (Journal)
Pusey, P.L., Stockwell, V.O., Reardon, C.L., Smits, T.H. and Dufy, B. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology, 101(10):1234–1241. doi: 10.1094/PHYTO-09-10-0253. (Journal)
Ranal, M., and De Santana, D.G. 2006. How and why to measure the germination process? Revista Brasilian Botanique, 29(1): 1-11. doi:10.1590/S0100-84042006000100002. (Journal)
Saia, S., Aissa, E., Luziatelli, F., Ruzzi, M., Colla, G., Fica, A.G., et al. 2020. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza, 30: 133–147. doi: 10.1007/s00572-019-00927-w. (Journal)
Saadouli, I., Mosbah, A., Ferjani, R., Stathopoulou, P., Galiatsatos, I., Asimakis, E., Marasco, R., Daffonchio, D., Tsiamis, G. and Ouzari, H.I. 2021. The impact of the inoculation of phosphate-solubilizing bacteria Pantoea agglomerans on phosphorus availability and bacterial community dynamics of a semi-arid soil. Microorganisms, 9(8): 1661. doi: 10.3390/microorganisms9081661. (Journal)
Sasirekha, B., Bedashree, T. and Champa, K.L. 2012. Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. European Journal of Experimental Biology, 2(1): 95-104. (Journal)
Singh, B. and Satyanarayana, T. 2011. Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17: 93-103. doi: 10.1007/s12298-011-0062-x. (Journal)
Sorroche, F.G., Spesia, M.B., Zorreguieta, Á., and Giordano, W. 2012. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Applied and environmental microbiology, 78(12): 4092-4101. doi: 10.1128/AEM.07826-11. (Journal)
Spaepen, S. 2015. Plant hormones produced by microbes. In Lugtenberg, B. (Ed.) Principles of plant-microbe interactions. Springer International Publishing. pp: 247–256. (Book)
Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4): 425-448. doi: 10.1111/j.1574-6976.2007.00072.x. (Journal)
Stringlis, I.A., Zhang, H., Pieterse, C.M.J., Bolton, M.D., and de Jonge, R. 2018. Microbial small molecules ‐ weapons of plant subversion. Natural Product Reports, 35: 410–433. doi: 10.1039/c7np00062f.  (Journal)
Ruzzi, M., and Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196: 124–134. doi: 10.1016/ j.scienta.2015.08.042 . (Journal)
Völksch, B., Thon, S., Jacobsen, I.D. and Gube, M. 2009. Polyphasic study of plant- and clinic-associated Pantoea agglomerans strains reveals indistinguishable virulence potential. Infection, Genetics and Evolution, 9: 1381–1391. doi: 10.1016/j.meegid.2009.09.016. (Journal)
Wang, J., Chen, T., White, J.F., Wei, X., Li, X., and Li, C. 2022. Pantoea agglomerans, a seed-borne plant pathogenic bacterium, decreased seed germination, seedling growth and seed quality of oat. European Journal of Plant Pathology, 162: 1-13. doi: 10.1007/s10658-021-02430-5. (Journal)
Woo, S.L. and Pepe, O. 2018. Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9: 1801. doi: 10.3389/ FPLS.2018.01801/BIBTEX. (Journal)
Wu, H., Yang, J., Shen, P., Li, Q., Wu, W., Jiang, X., Qin, L., Huang, J., Cao, X. and Qi, F. 2021. High-level production of indole-3-acetic acid in the metabolically engineered Escherichia coli. Journal of Agricultural and Food Chemistry, 69: 1916–1924. doi: 10.1021/acs.jafc.0c08141. (Journal)
Wu, Q.S., and Zou, Y.N. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ, 55: 436–442. doi: 10.17221/61/2009-PSE. (Journal)
Xie, J., Shu, P., Strobel, G., Chen, J., Wei, J., Xiang, Z. and Zhou, Z. 2017. Pantoea agglomerans SWg2 colonizes mulberry tissues, promotes disease protection and seedling growth. Biological Control, 113: 9–17. doi:10.1016/j.biocontrol.2017.06.010 (Journal)
Zhang, Y. and Qiu, S. 2015. Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data. Antonie Van Leeuwenhoek, 108: 1037–1046. Doi:10.1007/s10482-015-0556-6, PMID. (Journal)
Zhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H. and Wang, Y. 2019. The distribution of tryptophan- ependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules, 24(7):1411. doi: 10.3390/molecules24071411. (Journal)