ارزیابی بهبود جوانه‌زنی بذر سان‌همپ (Crotalaria juncea) با نانوذرات دی‌اکسید تیتانیوم (TiO2) در تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، فیزیولوژی گیاهان زراعی، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، فیزیولوژی گیاهان زراعی، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22124/jms.2024.8039

چکیده

شوری یکی از تنش­های محدودکننده تولید محصولات کشاورزی است. پتانسیل بالای سان­همپ (Crotalaria juncea) به عنوان گیاهی گرمسیری و نیمه­گرمسیری و کاربردهای بسیار آن در علم و صنعت سبب بررسی پتانسیل جوانه­زنی آن در شرایط شوری و بررسی بهبود جوانه­زنی آن با نانوذرات دی­اکسید تیتانیوم شد. آزمایشی در سال 1402 در دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. تیمارهای آزمایشی شامل پرایمینگ بذر با نانوذرات دی­اکسید تیتانیوم (صفر، 5/0 و یک میلی­مولار) و سطوح تنش شوری (صفر، 4/0-، 8/0- و 2/1- مگاپاسگال) با استفاده از نمک سدیم­کلراید بود. نتایج نشان داد که پتانسیل­های اسمزی 4/0، 8/0- و 2/1- مگاپاسگال سبب کاهش درصد جوانه­زنی (56/10، 49/20 و 26/31 درصد)، طول ریشه­چه (00/68، 52/88 و 24/91 درصد) و طول ساقه­چه (92/46، 59/82 و 87/89 درصد) گردید. نانوپرایمینگ بذر در غلظت­ یک میلی­مولار سبب افزایش طول ریشه­چه (40/25 درصد) و طول ساقه­چه (87/24 درصد) در مقایسه با عدم پرایمینگ شد. همچنین نانوپرایمینگ سبب افزایش 92/15، 18/10 و 35/1 درصدی فعالیت آنزیم کاتالاز و 81/17، 26/6 و 40/8 درصدی محتوی پرولین در پتانسیل­های اسمزی 4/0-، 8/0- و 2/1- مگاپاسگال شد. نانوپرایمینگ در غلظت یک میلی­مولار سبب کاهش 92/30، 59/41 و 74/36 درصدی پراکسیداسیون لیپیدی در پتانسیل­های اسمزی 4/0-، 8/0- و 2/1- مگاپاسگال شد. نتایج این مطالعه علاوه بر گزارش توان جوانه­زنی بذر سان­همپ در تنش شوری 2/1- مگاپاسگال بر بهبود جوانه­زنی و سایر مؤلفه­های رشدی وابسته به آن با استفاده از پرایمینگ بذر با نانوذرات دی­اکسید تیتانیوم در غلظت یک میلی­مولار تاکید می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of improving Sunn hemp (Crotalaria juncea) seed germination with titanium dioxide (TiO2) nanoparticles under salinity stress

نویسندگان [English]

  • Fatemeh Ahmadnia 1
  • Ali Ebadi 2
1 Ph.D Graduated, Crop Physiology, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Professor, Crop Physiology, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Salinity is one of the limiting stresses on agricultural production. The high potential of Sunn hemp (Crotalaria juncea) as a tropical and semi-tropical plant and its scientific and industrial uses caused to investigate its germination potential under saline condition and improving it by titanium dioxide nanoparticles. An experiment conducted in 2023 in the Faculty of Agriculture and Natural Resources of Mohaghegh Ardabili University as factorial based on randomized complete design with three replications. Experimental treatments included different concentrations of seed priming with titanium dioxide nanoparticles (0, 0.5, and 1mM) and salinity stress (0, -0.4, -0.8, and -1.2 MPa) using sodium chloride. The results indicated that the osmotic potentials of -0.4, -0.8, and -1.2 MPa significantly reduced the germination percentage (10.56, 20.49, and 31.26%), radicle length (68.00, 88.52, and91.24%), and plumule length (46.92, 82.59, and 89.87%). Nano priming of seeds by 1 mM increased radicle (25.40%) and plumule length (24.87%) compared to no priming. Also, nano priming enhanced catalase activity by 15.92, 10.18, and 1.35% and proline content by 17.81, 6.26, and 8.40% at osmotic potentials of -0.4, -0.8 and -1.2 MPa. Nano priming at a concentration of 1 mM decreased lipid peroxidation by 30.92, 41.59, and 36.74% at -0.4, -0.8 and -1.2 MPa osmotic potentials. The results of this study, in addition to reporting the germination ability of Sunn hemp seeds under salinity stress of1.2 MPa, emphasized the improvement of germination and related indices by using seed priming with titanium dioxide nanoparticles at a 1mM.

کلیدواژه‌ها [English]

  • Catalase
  • Lipid peroxidation
  • Osmotic potential
  • Sodium chloride
Abdel latef, A.A.H., Srivastsvs, A.K., Abd El-sadek, M.S., Kordrostami, M. and Phan Tran, L.S. 2018. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation and Development, 29: 1065-1073.
          DOI: 10.1002/ldr.2780 (Journal)
Abdul-Baki, A. and Anderson, J.D. 1973. Vigor determination in soybean by multiple criteria. Crop Science, 13(6): 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x (Journal)
 
Ahmadnia, F., Ebadi, A., Hashemi, M. and Nabati, L. 2021. Investigating the effectiveness of sunn hemp (Crotalaria juncea) and rye (Secale cereal L.) in weed suppression and yield of kohlrabi (Brassica oleracea var. Gongylodes).Journal of Agricultural Science and Sustainable Production,31(2):43-56. DOI: 10.22034/SAPS.2021.13090 (In Persian)(Journal)
Ahmadnia, F., Ebadi, A., Hashemi, M., Ghavidel, A. and Alebrahim, M.T. 2023. Investigating the effect of aqueous extracts of sunn hemp (Crotalaria juncea) and oats (Avena sativa L.) on the germination of wild mustard weed (Sinapis arvensis). Iranian Journal of Seed Science and Research, 10(2): 1-19. DOI: 10.22124/jms.2023.7605 (In Persian)(Journal)
Amooaghaie, R., Majidi, M. and Farhadian, S. 2021. Impact of nano -TiO2 on salt stress tolerance of Carum copticum. Journal of Plant Process and Function Iranian Society of Plant Physiology,11(48): 19-33. http://jispp.iut.ac.ir/article-1-1560-fa.html (In Persian)(Journal)
Antic, Z., Krsmanovic, R.M., Nikolic, M.G., Marinovic-Cincovic, M., Mitric, M., Polizzi, S. and Dramicanin, M.D. 2012. Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Materials Chemistry and Physics, 135(2012): 1064-1069. http://dx.doi.org/10.1016/j.matchemphys.2012.06.0 (Journal)
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S. 2020. Salinity induced physiological and biochemical changes in plants: anomic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156(2020): 64-77. DOI: 10.1016/j.plaphy.2020.08.042. (Journal)
Bates, L.S., Walderen, R.D., and Taere, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207. DOI: 10.1007/BF00018060. (Journal)
Bojović, B., Đelić, G., Topuzović, M. and Stanković, M. 2010. Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujevac Journal Science, 32(2010):
          83-87. https://scindeks.ceon.rs/article.aspx?artid=1450-96361032083B&lang=en (Journal)
Borna, F. and Heidari, M. 2022. Evaluation of seed germination and seedling growth indices of Drimia maritima L. under salinity and temperature stress. Journal of Seed Research, 12 (1): 11-23.
          DOI: 10.30495/jsr.2022.1962102.1236. (In Persian) (Journal)
Chao, S.H.L. and Choi, H.S. 2005. Method for Providing Enhanced Photosynthesis. Korea Research Institute of Chemical Technology, Jeonju, South Korea, 10 P.p. (HandBook)
Chaudhary, B., Tripathi, M.K., Bhandari, H.R., Pandey, S.K., Meena, D. and Prajapati S.P. 2016. Problems and prospects of sunn hemp cultivation in rural areas. In: Pant, H., Singh, M.K., (eds) Natural resource management for sustainable agriculture and rural development, 108-119Pp. (Book)
Chougala, L.S., Yatnatti, M.S., Linganagoudar, R.K., Kamble, R.R. and Kadaevarmath, J.S. 2017. A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Journal of Nano-And Electronic Physics, 9(4): 1-6. DOI: 10.21272/jnep.9(4).04005 (Journal)
Cox, J.D., Silveiro, I. and Garcia de Abajo, F.J. 2016. Quantum effects in the nonlinear response of Graphene plasmons. ACS Nano, 10(2): 1995-2003. https://doi.org/10.1021/acsnano.5b06110. (Journal)
Demiro˘glu Topçu, G., Tenikecier, H.S. and Ate¸s, E. 2024. MacroMineral uptake, relative water content, retention capability, and tolerance index of Sunn Hemp (Crotalaria juncea L.) under salinity stress at early seedling. Agronomy, 14, 823, 1-12.
          https://doi.org/ 10.3390/agronomy14040823 (Journal)
Ellis, K.E. and Barbercheck, M.E. 2015. Management of overwintering cover crops influences floral resources and visitation by native bees. Environmental Entomology, 44:999-1010. https://doi.org/10.1093/ee/nvv086 (Journal)
Ellis, R.H. 1992. Seed and seedling vigor in relation to crop growth and yield. Plant Growth Regulation,11 (1992): 249-255. DOI: 10.1007/BF00024563 (Journal)
Farooq, M., Irfan, M., Aziz, T., Ahmad, I. and Cheema, S.A. 2013. Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 199:12-22.
          DOI 10.1111/j.1439-037x.2012. 00521.x (Journal)
Garzon, J., Vendramini, J.M.B., Silveira, M.L., Moriel, P., De Silva, H.M.S., Dubeux Jr, J.C.B., Keaneko, M., Carnelos, C.C. and Mamede, P.A. 2020. Harvest management and genotype effects on sunn hemp forage characteristics. Agronomy Journal, 113(2021): 298-307.
          DOI: 10.1002/agj2.20465 (Journal)
 
Gharpure, S., Yadwade, R. and Ankamwar, B. 2022. Non-antimicrobial and non-anticancer properties of znon nanoparticles biosynthesized using different plant parts of Bixa Orellana. ACS Omega,2022(7): 1914-1933. https://doi.org/10.1021/acsomega.1c05324 (Journal)
Grand, F. and Tucci, P. 2016. Titanium dioxide nanoparticles: a risk for human health? Mini-Review in Medicinal Chemistry, 16: 762–769. https://doi.org/10.2174/ 1389557516666160321114341. (Journal)
Gudarzi, M., Ebadi, A., Ahmadnia, F., Hashemi, M. and Ghahremani, S. 2021. Effect of cover crops on yield and weeds control of Lettuce Icebergs (Lactuca sativa var. Ice berg). Journal of Agricultural Science and Sustainable Production, 30(4): 173-184. DOI: 10.22034/SAPS.2020.12310 (In Persian)(Journal)
Hatami, M., Ghorbanpour, M. and Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological Environment, 8(22): 53-59. http://jbes.uludag.edu.tr/PDFDOSYALAR/22/mak06.pdf (Journal)
JahanBakhsh, S., Parmoon, Gh., Azad, H. and Ghatei, A. 2018. Modeling hydro time and threshold tolerance to salinity and drought on germination different species Basil (Ocimum basilicum). Iranian Journal of seed Science and Technology, 7(2): 119-142.
          DOI: 10.22034/ijsst.2019.109228.1056 (In Persian)(Journal)
Johnson, R. and Puthur, J.T. 2021. Seed priming as a cost-effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162(2021): 247-257. https://doi.org/10.1016/j.plaphy.2021.02.034 (Journal)
Kamireddy, S.R., Li, J., Abbina, S., Berti, M., Tucker, M. and Ji, Y. 2013. Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Industrial Crop Products, 49 (2013): 598-609. https://doi.org/10.1016/j.indcrop.2013.06.018. (Journal)
Li, F., Liang, Z., Zheng, X., Zhao, W., Wu, M. and Wang, Z. 2015. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology, 158: 1-13. https://doi.org/10.1016/j.aquatox.2014. 10.014. (Journal)
Maguire, J.D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2(2):176-177.
Mahmodzadeh, H., Nabavi, M. and Kashefi, H. 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental and Horticultural Plants, 3(1): 25-32. https://sanad.iau.ir/en/Journal/jornamental/Article/513414?jid=513414 (Journal)
Marambe, B. and Ando, T. 1992. Phenolic acids as potential seed germination-inhibitors in animal-waste composts. Soil Science and Plant Nutrition, 38(4): 727-733. https://doi.org/10.1080/00380768.1992.10416703 (Journal)
Mathew, S.S., Sunny, N.E. and Shanmugam, V. 2021. Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorganic Chemistry Communications, 126: 108485, 1-18. https://doi.org/10.1016/j.inoche.2021.108485 (Journal)
Mattiello, A., Filippi, A., Poscic, F., Musetti, R., Salvatici, MC., Giordano, C., Vischi, M., Bertolini, A. and Marchiol, L. 2015. Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Frontiers in Plant Science, 6: 1043.
          https://doi.org/ 10.3389/fpls.2015.01043. (Journal)
Mazarie, A., Mousavi-nik, S. M., Ghanbari, A. and Fahmideh, L. 2019. Effect of different spraying concentrations of jasmonic acid and titanium dioxide nanoparticles on some physiological traits and antioxidant system activity of Sage (Salvia officinalis L.). Iranian Journal of Plant Biology,11(29): 1-22. DOI:10.22108/ijpb.2018.110510.1092 (In Persian)(Journal)
Mingyu, S., Hong, F., Liu, C., Wu, X., Liu, X. and Chen, L. 2007. Effects of nano anatase TiO2 on absorption, distribution of light and photo reduction activities of chloroplast membrane of spinach. Biological Trace Element Research, 118: 120-130. DOI:10.1007/s12011-007-0006-z (Journal)
 
Miransari, M. and Smith, D.L. 2014. Plant hormones and seed germination. Environmental and Experimental Botany, 99(2014): 110-121. https://doi.org/10.1016/j.envexpbot.2013.11.005 (Journal)
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7:405-410. https://doi.org/10.1016/S1360- 1385(02)02312-9. (Journal)
Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. 2010. Nanoparticulate material delivery to plants. Plant Science, 179: 154-163. DOI:10.1016/j.plantsci.2010.04.012 (Journal)
Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N. and Behra, R. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology,42(23): 8959-8964. https://doi.org/10.1021/es801785m (Journal)
Nunes, A.D.S., Lourenção, A.L.F., Pezarico, C.R., Scalon, S.P.Q. and Gonçalves, M.C. 2009. Fontes e níveis de salinidade na germinação de sementes de Crotalaria juncea L. Ciência e Agrotecnologia, 33(3): 753-757. (Journal)
Parenti, A., Cappelli, G., Zegada-Lizarazu, W., Sastre, C.M., Christou, M., Monti, A. and Ginaldi, F. 2021. SunnGro: A new crop model for the simulation of sunn hemp (Crotalaria juncea L.) grown under alternative management practices. Biomass and Bioenergy, 146(2021): 1-16. https://doi.org/10.1016/j.biombioe.2021.105975 (Journal)
Parida, A.K. and Das, A.B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3): 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010 (Journal)
Pazhouhan, I., Jalali, S.Gh.A., Atabati, H., Zarafshar, M. and Sattarian, A. 2016. Comparison of carbon nanotubes with chemical and physical treatments to break seed dormancy of Myrtus communis L. Journal of Botany Research, 29(2): 300-308. DOI: 20.1001.1.23832592.1395.29.2.6.0 (In Persian)(Journal)
Perry, D.A. 1991. Methodology and application of vigor tests. International Seed Testing Association. Zurich. Switzerland. 275p. (Book)
Sadeghi, H. and Robati, Z. 2015. Response of Cichorium intybus L. to eight seed priming methods under osmotic stress conditions. Biocatalysis and Agricultural Biotechnology, 4: 443-448. https://doi.org/10.1016/j.bcab.2015.08.003 (Journal)
Samuel, P.N.K.J. and Sornakumar, R.S.A. 2020. Antioxidant, antimicrobial, haemolytic, germination and growth promoting properties of Crotalaria juncea L. Plant Science Today, 7(2):201-205. https://doi.org/10.14719/pst.2020.7.2.653 (Journal)
Sant´as-Miguela, V., Arias-Estevez, M., Rodriuez-Seijo, A. and arenas-Lago, D. 2023. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution, 334(2023),122222: 1-17. https://doi.org/10.1016/j.envpol.2023.122222 (Journal)
Scott, S.J., Jones, R.A. and Williams, W.A. 1984. Review of data analysis methods for seed germination. Crop Science, 24(6): 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x (Journal)
Sengupta, S. and Debnath, S. 2018. Development of sunn hemp (Crotalaria juncea) fibre based unconventional fabric. Industrial Crops and Products, 116(2018): 109-115. https://doi.org/10.1016/j.indcrop.2018.02.059 (Journal)
Shah, T., Latif, S., Khan, H., Munsif, F. and Nie, L. 2019. Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. Agronomy, 9(11), 757: 1-21. Available from http://dx.doi.org/10.3390/agronomy9110757. DOI 10.3390/ agronomy9110757. (Journal)
Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A.A., Jan, S. and Ahmad, P. 2021. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University - Science, 33(2021), 101207: 1-8. https://doi.org/10.1016/j.jksus.2020.10.004 (Journal)
Sharif, H., Mehmood, A., Ulfat, A., Ahmad, K.S., Hussain, I. and Khan, R.T. 2021. Environmentally sustainable production of silver nanoparticles and their effect on Glycine max L. Seedlings. Gesunde Pflanzen, 73(2021): 95-103. https://doi.org/10.1007/ s10343-020-00532-4. (Journal)
 
Sheahan, C.M. 2012. Plant Guide for Sunn Hemp (Crotalaria juncea); USDA-Natural Resources Conservation Service, Cape May Plant Materials Center: Cape May, NJ, USA, 1-4. (Journal)
Siddiqi, K.S. and Husen A. 2017. Plant response to engineered metal oxide nanoparticles. Nanoscale Research Letters, 12:92: 1-18. https://doi.org/10.1186/s11671-017-1861-y. (Journal)
Singh, A., Singh, N.B., Hussain, I., Singh, H., Singh, S.C. 2015. Plant-nanoparticle interaction: An approach to improve agricultural practices and plant productivity. International Journal of Pharmaceutical Science Invention, 4 (8): 25-40. DOI:27.6718/0480025040 (Journal)
Skinner, E.M., Diaz-Perez, J.C. and Phatak, Sh.C. 2012. Allelopathic effects of sunn hemp (Crotalaria juncea L.) on germination of vegetables and weeds. HortScience, 47(1):138-142. DOI:10.21273/HORTSCI.47.1.138 (Journal)
Stewart, R.C. and Beweley, J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2): 245248. DOI: 10.1104/pp.65.2.245(Journal)
Sudhakar, C., Lakshmi, A. and Giridara Kumar, S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science,
          167(3): 613-619. DOI: 10.1016/S0168-9452(01)00450-2(Journal)
Tahjib-Ul-Arif, M., Roy, P.R., Sohag, A.A.M., Afrin, S., Rady, M.M. and Hossain, M.A. 2018. Exogenous calcium supplementation improves salinity tolerance in BRRI Dhan28; a salt susceptible high-yielding Oryza sativa cultivar. Journal of Crop Science and Biotechnology, 21 (4): 383-394. DOI No. 10.1007/s12892-018-0098-0 (Journal)
Tekrony, D.M. and Egli, D.B. 1991. Relationship of seed vigor to crop yield: A review. Crop Science,
          31(3):816-822. https://doi.org/10.2135/cropsci1991.0011183X003100030054x (Journal)
Tripathy, BC. and Oelmuller, R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling and Behavior, 7: 1621-1633. https:// doi.org/10.4161/psb.22455. (Journal)
Uçarli, C. 2020. Effects of salinity on seed germination and early seedling stage. In: Abiotic stress in plants. (Ed. Fahad, S., Saud, S., Chen, Y., Wu, C. and Wang, D.). 1-20 Pp. DOI:10.5772/intechopen.93647 (Chapter)
Wang, K.H., Sipes, B.S. and Schmitt, D.P. 2002. Crotalaria as a cover crop for nematode management: A review. Nematropica, 32 (2002): 35-57. http://journals.fcla.edu/nematropica/article/view/69643 (Journal)
Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P. and Kwak, S.S. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7):570-577. https://doi.org/10.1016/j.plaphy.2009.02.009 (Journal)
Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C. and Yang, P. 2006. Influence of nano anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2): 179-
          DOI: 10.1385/bter:110:2:179. (Journal)
Yuan, SJ., Chen, JJ., Lin, ZQ., Li, WW., Sheng, GP. and Yu, HQ. 2013. Nitrate formation from atmospheric nitrogen and oxygen photocatalyzed by nano-sized titanium dioxide. Nature Communications, 4: 2249. https:// doi.org/10.1038/ncomms3249. (Journal)
Zhang, X., Li, W. and Yang, Z. 2015. Toxicology of nanosized titanium dioxide: an update. Archives of Toxicology, 89: 2207-2217. https://doi.org/ 10.1007/s00204-015-1594-6. (Journal)
Zheng, L., Hong, F., Lu, S. and Liu, C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1): 83-91. https://doi.org/10.1385/BTER:104:1:083 (Journal)