کمّی‌سازی پاسخ جوانه‌زنی دو رقم چغندرقند به دما و شوری: مدلهای رگرسیون غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای زراعت گروه کشاورزی، واحد شیروان، دانشگاه آزاد اسلامی، شیروان، ایران

2 استادیار، گروه کشاورزی، واحد بجنورد، دانشگاه آزاد اسلامی، بجنورد، ایران

3 استادیار، گروه کشاورزی، واحد شیروان، دانشگاه آزاد اسلامی، شیروان، ایران

10.22124/jms.2024.8038

چکیده

این مطالعه با هدف بررسی اثر تنش شوری و دماهای مختلف بر جوانه‌زنی و تعیین دماهای کاردینال جوانه‌زنی (دمای پایه، مطلوب و بیشینه جوانه‌زنی) دو رقم چغندرقند انجام شد. تیما­رهای آزمایشی شامل سطوح مختلف تنش شوری (0، 40، 80، 120 و 160 میلی‌مولار) و دماهای مختلف (5، 10، 15، 20، 25، 30، 35، 40، 45 و 50 درجه سانتی‌گراد) بود. مدل سیگموئیدی سه پارامتره جهت تعیین زمان رسیدن به 50 درصد جوانه‌زنی استفاده شد. نتایج نشان داد که دما و تنش شوری بر درصد جوانه‌زنی و سرعت جوانه‌زنی اثرگذار بود. به‌طوری‌که، با افزایش دما، درصد و سرعت جوانه‌زنی تا دمای مطلوب افزایش یافت و با افزایش تنش شوری، درصد جوانه‌زنی و همچنین سرعت جوانه‌زنی کاهش یافت. درصد و سرعت جوانه‌زنی در رقم بریجیتا بیشتر از رقم شکوفا بود. با توجه به پارامترهای RMSE، CV، R2، SE مناسب‌ترین مدل برای هر دو رقم چغندرقند مدل بتا بود. در رقم بریجیتا دمای پایه بین 67/3 الی 5 درجه سانتی‌گراد، دمای مطلوب بین 67/16 الی 35/26 درجه سانتی‌گراد و دمای سقف بین 10/40 الی 89/40 درجه سانتی‌گراد و در رقم شکوفا دمای پایه بین 88/2 الی 65/5، دمای مطلوب بین 11/16 الی 47/26 درجه سانتی‌گراد و دمای سقف بین 94/39 الی 94/42 درجه سانتی‌گراد متغیر بود. نتایج به‌دست آمده نشان داد که درصد و سرعت جوانه‌زنی در رقم بریجیتا در شرایط تنش شوری و دماهای مختلف بالاتر از رقم شکوفا بود ولی از لحاظ دماهای کاردینال اختلاف معنی‌داری بین دو رقم وجود نداشت. بنابراین با استفاده از خروجی‌ این مدل‌ها در دماهای مختلف می‌توان سرعت جوانه‌زنی را در پتانسیل‌های مختلف پیش‌بینی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Quantification of germination response of two sugar beet cultivars to temperature and salinity: nonlinear regression models

نویسندگان [English]

  • Esmaeil Shirghani 1
  • Majid Rahimizadeh 2
  • Maryam Tatari 3
  • MohammadReza Tookaloo 2
1 PhD student of Agronomy, Department of Agriculture, Shirvan Branch, Islamic Azad University, Shirvan, Iran
2 Assistant Professor, Department of Agriculture, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
3 Assistant Professor, Department of Agriculture, Shirvan Branch, Islamic Azad University, Shirvan, Iran
چکیده [English]

This study was conducted with the aim of investigating the effect of salinity stress and different temperatures on germination and determining the cardinal temperatures of germination (basic, optimal and ceiling germination temperatures) of two sugar beet cultivars. Experimental treatments included different levels of salinity stress (0, 40, 80, 120 and 160 mM) and different temperatures (5, 10, 15, 20, 25, 30, 35 and 40 °C). The three-parameter sigmoidal model was used to determine the time to reach 50% germination. The results showed that temperature and salinity stress had an effect on germination percentage and germination rate. In addition, the results showed that with increasing temperature up to optimum temperature, the germination percentage and germination rate increased, and with increasing salinity stress, the germination percentage and also the germination rate decreased. The germination percentage and germination rate in Brigitta variety was higher than that of Shokofa variety. According to the RMSE, CV, R2Adj, SE parameters, the beta model was the most suitable model for both sugar beet cultivars. In the Brigitta variety, the base temperature is between 3.67 and 5 °C, the optimal temperature is between 16.67 and 26.35 °C, and the roof temperature is between 40.10 and 40.89 °C, and in the shokofa variety, the base temperature is between 2.88 and 2.80 °C. 5.65, the optimum temperature varied between 16.11 and 26.47 °C and the ceiling temperature between 39.94 and 42.94 °C. The obtained results showed that the percentage and speed of germination in Brigitta variety under salinity stress conditions and different temperatures was higher than that of Shokofa variety, but there was no significant difference between the two varieties in terms of cardinal temperatures. Therefore, by using the output of these models at different temperatures, it is possible to predict the germination speed at different potentials.

کلیدواژه‌ها [English]

  • Beta model
  • Dent mode
  • Germination
  • Salinity stress
  • Segmented model
  • Sugar beet
Abbasi Bidli, M. and Abdali Mashhadi, A. 2017. Effect of priming on germination characteristics and growth of the Vigna radiata (Shushtar ecotype) seeding under salinity stress. Iranian Journal of Seed Science and Research, 4(1):75-88. (In Persian)(Journal) doi:10.22124/jms.2017.2249
Acosta, J.M., Bentivegna, D.J., Panigo, E.S. and Dellaferrera, I. 2014. Influence of environmental factors on seed germination and emergence of Iresine diffusa. Weed Research, 54:584-592. (Journal) doi:10.1111/wre.12114
Al-Khateeb, S.A. 2006. Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresource Technol, 97: 292-298. (Journal) doi:10.1016/j.biortech.2005.02.041
Alvarado, V. and Bradford, K.J. 2002. A hydrothermal time model explains the cardinal temperature for seed germination. Plant Cell and Environment, 25: 1061-1069. (Journal) doi:10.1046/j.1365-3040.2002.00894.x
Ansari, O., Gherekhloo, J., Ghaderi-Far, F. and Kamkar, B. 2018. Effect of osmotic potential on germination cardinal temperatures of tall mallow (Malva sylvestris L.). Environmental Stresses in Crop Sciences, 11(2): 341-352. (In Persian)(Journal) doi:10.5555/20203126852
Ansari, O., Gherekhloo, J., Kamkar, B. and Ghaderi-Far, F. 2016. Breaking seed dormancy and determining cardinal temperatures for Malva sylvestris using nonlinear regression. Seed Science and Technology, 44(3): 1-14. (Journal) doi:10.15258/sst.2016.44.3.05
Blum, A. 1988. Plant Breeding for Environmental Stress. CRC press, USA. (Book)
Bradford, K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50: 248-260. (Journal)
     doi:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2
Brown, R.F. and Mayer, G.G. 1988. Representing cumulative germination. The use of the Weibull function and other empirically derived curves. Annals of Botany. 6: 127-138. (Journal) doi:10.1093/oxfordjournals.aob.a087535
Deilam, A., Rouhani, H., Sabouri, H. and Gholam Ali Pooralmadari, E. 2019. Effect of drought stress and salinity on germination, soluble carbohydrates and proline of Atriplex halimus. Iranian Journal of Seed Science and Research, 6(2): 245-255. (In Persian)(Journal) doi:20.1001.1.24763780.1398.6.2.9.6
Derakhshan, A., Gherekhloo, J., Vidal, R.B. and De Prado, R. 2013. Quantitative description of the germination of littleseed canarygrass (Phalaris minor) in response to temperature. Weed Science, 62: 250-257. (Journal) doi:10.1614/WS-D-13-00055.1
Farhoudi, R. and Khayamim, S. 2019. Evaluation of Iranian sugar beet commercial varieties under salinity stress in germination and establishment growth stages. Journal of Plant Process and Function, 9(36): 397-412. (In Persian)(Journal)
Forcella, F., Benech Arnold, R.L. and Sanchez, R. 2000. Modelling seedling emergence. Field Crops Research, 67: 123-139. (Journal) doi:10.1016/S0378-4290(00)00088-5
Francis, S.A. 2007. Development of sugar beet. Blackwell, Hoboken, N.J. (Book)
Francois, L.E. and Goodin, J.R. 1972. Interaction of temperature and salinity on sugar beet germination. Agronomy Journal, 64:272 -273. (Journal) doi:10.1007/s40003-013-0084-4
Gholipor, B., Mozaffari, A., Maleki, A., Mirzaei Heydari, M. and Babaii, F. 2021. Determination of the effect of drought and salinity stress on germination and seedlings specifications of sea beet (Beta vulgaris ssp. maritima) in comparison with sugar beet (Beta vulgaris). Iranian Journal Seed Science and Research, 10(3): 562-564. (In Persian) (Journal) doi:10.22092/ijsst.2020.125547.1263
Grieve, C.M., Lesch, S., Francois, L.E. and Maas, E.W. 1992. Analysis of main-apike yield components in salt-stressed wheat. Crop Science, 32: 697- 703. (Journal)
     doi: 10.2135/cropsci1992.0011183X003200030025x
Hilhorst, H.W.M. 1998. The regulation of secondary dormancy. The membrane hypothesis revisited. Seed Science Research, 8: 77-90. (Journal) doi:10.1017/S0960258500003974
Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds.
Journal of Plant Physiology, 15(192): 38-46. (Journal) doi:10.1016/j.jplph.2015.12.011
Jafarzadeh, A.A. and Aliasgharzad, N. 2007. Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Bratislava Bio-Economy, 62(5): 562-564. (Journal)
     doi: 10.2478/s11756-007-0111-7
Jalilian, A., Mazaheri, D., Tavakol Afshari, R., Elahian, M. and Ghohari, J. 2005. Estimation of base temperature and the investigation of germination and field emergence trend of monogerm sugar beet under various temperatures. Journal of Sugar Beet, 20(2): 97-112. (Journal) doi:10.22092/jsb.2005.6866
Jalilian, A., Mazaheri, D., Tavakol Afshari, R., Elahian, M., Rahimian Mashhadi, H. and Ahmadi, A. 2009. Effect of freezing damage at seedling stage in different sugar beet cultivars. Iranian Journal of Crop Sciences, 10 (4): 400–415. (In Persian)(Journal)
Kamkar, B., Jami Al-Ahmadi, M. and Mahdavi-Damghani, A. 2011. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds germinate using non-linear regression models. Industrial Crops and Products, 35: 192-198. (Journal)
     doi: 10.1016/j.indcrop.2011.06.033
Kaya, M.D., Okcu, G., Atak, M., Cıkılı, Y.  and Kolsarıcı, O. 2006.  Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24: 291- 295. (Journal) doi:10.1016/j.indcrop.2011.06.033
Khalili, N., Kamkar, B. and Khodabakhshi, A. 2015. Quantifying and analysis of germination responses of annual savory (Satureja hortensis L.) to temperature and salinity stress. Environmental Stresses in Crop Sciences, 8(1): 83-92. (In Persian)(Journal) doi:10.1016/j.eja.2005.08.001
Khodabakhshi, A., Kamkar, B. and Khalili, N. 2015. Using nonlinear regression models to quantify germination response of annual savory to temperature and water potential. Journal of Crops Management. 17(1): 229-240. (In Persian) (Journal) doi:8e34eccbc30b066876ba9f76058f1066
Khyamim. S., Tavakkol Afshari, R., Sadeghian Motahar, S.Y. and Poostini, K. 2012. Effect of salinity stress on sugar beet seed germination indices in laboratory and greenhouse conditions. Iranian Journal of Crop Scince. 13(1): 1-17. (In Persian) (Journal) doi:20.1001.1.15625540.1390.13.1.1.5
Li, Q., Tan, J., Li, W., Yuan, G., Du, L., Ma, S. and Wang, J. 2015. Effects of environmental factors on seed germination and emergence of Japanese brome (Bromus japonicus). Weed Science. 63: 641-649. (Journal)
 
Khalili, N., Kamkar, B. and Khodabakhshi, A.H. 2015. Quantifying and analysis of germination responses of annual savory (Satureja hortensis L.) to temperature and salinity stress. Environmental Stresses in Crop Sciences. 8(1): 83-92. (In Persian) (Journal)
Nonogaki, H., Bassel, G.W. and Bewley, J.D. 2010. Germination still a mystery. Plant Sciencd, 179: 574–81. (Journal) doi:10.1614/WS-D-14-00131.1
Nozari-nejad, M., Zeinali, E., Soltani, A., Soltani, E. and Kamkar, B. 2014. Quantify wheat germination rate response to temperature and water potential. Crop Production, 6(4): 117-135. (In Persian)(Journal) doi:20.1001.1.2008739.1392.6.4.7.9
Patade, V.Y., Maya, K. and Zakwan, A. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4 (3): 125 -136. (Journal) doi:10.3923/rjss.2011.125.136
Piper, E.L., Boote, K.J., Jones, J.W. and Grimm, S.S. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36: 1606–1614. (Journal) doi:10.2135/cropsci1996.0011183X003600060033x

Shafii, B. and Price, W.J. 2001. Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological and Environmental Statistics, 6: 356–366. (Journal) doi:10.1198/108571101317096569

Soltani, A., Gholipoor, M. and Zeinali, E. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 55: 195–200. (Journal) doi:10.1016/j.envexpbot.2004.10.012

Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M. and Sarparast, R. 2006. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138, 156–167. (Journal) doi:10.1016/j.agrformet.2006.04.004

Tanveer, A., Khan, M.A., Ali, H.H., Javaid, M.M., Raza, A. and Chauhan, B.S. 2020. Influence of different environmental factors on the germination and seedling emergence of Ipomoea eriocarpin R. Br. Crop Protection, 130: 105070. (Journal) doi:10.1016/j.cropro.2019.105070
Van’t Hoff, J.H. 1887. The role of osmotic pressure in the analogy between solution and gases. Zeitschrift für Physikalische Chemie. 1: 481-508. (Journal) doi:10.1016/0376-7388(94)00232-N
Wang, J., Ferrell, J., MacDonald, G. and Sellers, B. 2009. Factors affecting seed germination of Cadillo (Urena lobata). Weed Science, 57: 31-35. (Journal) doi:10.1614/WS-08-092.1
Wei, S., Zhang, C., Li, X, Cui, H., Huang, H., Sui, B., Meng, Q. and Zhang, H. 2009. Factors affecting Buffalobur (Solanum rostratum) seed germination and seedling emergence. Weed Science, 57: 521-525. (Journal) doi:10.1614/WE-09-054.1
Wu, X., Li, J., Xu, H. and Dong, L. 2015. Factors affecting seed germination and seedling emergence of Asia Minor bluegrass (Polypogon fugax). Weed Science, 63: 440-447. (Journal)
     doi:10.1614/WS-D-14-00093.1
Yin, X., Kropff, M.J., McLaren, G. and Visperas, R.M. 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77: 1–16. (Journal)
     doi:10.1016/0168-1923(95)02236-Q
Zare, A., Deri, F. and Karimi, Z. 2021. Determination of cardinal temperature and evaluation of germination characteristics of Syrian Thistle (Notobasis syriaca) in response to temperature range and salinity and drought stresses. Iranian Journal of Seed Science and Research, 8(1): 91-10. (Journal) doi:10.52547/yujs.8.1.91
Zhang, H., Irving, L.J., Tian, Y. and Zhou, D. 2012. Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African Journal of Botany, 78: 203-210. (Journal)
     doi: 10.1016/j.sajb.2011.08.008