بررسی طول عمر بذر گونه‌های مختلف پونه‌سا Nepeta spp. در شرایط ex-situ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهش، بانک ژن منابع طبیعی ایران، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات،آموزش و ترویج کشاورزی، تهران، ایران

2 محقق، بانک ژن منابع طبیعی ایران، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات،آموزش و ترویج کشاورزی، تهران، ایران

3 دانشیار پژوهش، بخش تحقیقات صنوبر و درختان سریع الرشد، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات،آموزش و ترویج کشاورزی، تهران، ایران

10.22124/jms.2024.8037

چکیده

‌طول عمر بالا بذرهای خشک اساس حفاظت خارج از رویشگاه (ex-situ) بذرهای ارتدوکس (بذور متحمل به خشک شدن) است. با ‌این‌وجود در شرایط ذخیره­سازی یکسان، تنوع زیادی در طول عمر بذر گونه‌ها وجود دارد. نتایج آزمون زوال مصنوعی به مدیران بانک بذر ابزاری برای ارزیابی طول عمر بالقوه مجموعه‌های بذر این گونه‌ها در شرایط بانک بذر ارائه می‌دهد تا امکان انتخاب فواصل آزمایش مجدد زنده­ماندن مناسب و در نتیجه مدیریت بهتر مجموعه‌های حفاظتی را فراهم ‌کند. در پژوهش حاضر بذر نه گونه وحشی Nepata در دمای و رطوبت نسبی بالا (به­ترتیب 45 درجه سانتی­گراد و 60 درصد) به­مدت 120 روز زوال یافتند. بذرها در زمان‌های مختلف (1، 2، 5، 9، 20، 30، 50، 90 و 120 روز) از شرایط تیمار زوال خارج شده و زنده‌مانی آن­ها با آزمایش‌های استاندارد جوانه‌زنی بررسی گردید. زمان صرف­شده در انبار برای کاهش جوانه‌زنی به­میزان 50٪ (p50) با استفاده از تجزیه و تحلیل Probit تعیین شد و به­عنوان معیاری برای طول عمر نسبی بذر بین گونه­ها استفاده گردید. p50 بذور زوال یافته گونه‌های مختلف پونه‌سا در شرایط زوال مصنوعی، از 38/4 روز تا 16 روز متغیر بود. بر اساس طول عمر بذور بدست آمده در زوال مصنوعی، دوره‌های پایش‌ جوانه‌زنی بذر در بانک‌های ژن برای گونه‌های N. pogonosperma، N. haussknechtii، N. glomerulosa، N. cataria، N. depauperata می‌تواند ده ساله باشد. ولی دوره‌های پایش‌ جوانه‌زنی بذر گونه‌های N. menthoides، N. nuda، N. schirazana و N. oxydonata باید پنج ساله باشد و حتی جمع‌آوری مجدد بذر آن­ها استراتژی مناسب‌تری برای حفاظت آن­ها در شرایط ex-situ است.

کلیدواژه‌ها


عنوان مقاله [English]

Ex-situ seed longevity of Nepeta spp.

نویسندگان [English]

  • Parvin Salehi Shanjani 1
  • Leila Rasoulzadeh 2
  • Mohsen Calagari 3
  • Leila Falah Hoseini 2
  • Hamideh Javadi 1
1 Research Associate Professor, Natural Resources Gene Bank of Iran, Research Institute of Forests and Rangelands, Agricultural Research Education and extension Organization (AREEO), Tehran, Iran
2 Researcher, Natural Resources Gene Bank of Iran, Research Institute of Forests and Rangelands, Agricultural Research Education and extension Organization (AREEO), Tehran, Iran
3 Research Associate Professor, Poplar and Fast Gowing Trees Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and extension Organization (AREEO), Tehran, Iran
چکیده [English]

Extended seed longevity in the dry state is the basis for the ex-situ conservation of orthodox seeds (desiccation-tolerant seeds). However, even under identical storage conditions, there is wide variation in seed longevity between species. The results of the artificial aging test provide seed bank managers a tool to assess the potential longevity of seed sets of these species under seed bank conditions, to enable the selection of appropriate viability retest intervals and, as a result, better management of conservation accessions. In the present work, seeds of nine wild species of Nepata spp. were aged at elevated temperature and relative humidity (45°C and 60% RH) for 120 days. Seeds were removed at various times (1, 2, 5, 9, 20, 30, 50, 75, 100 and 125 days) and their viability was determined through standard germination tests. The time taken in storage for viability to fall to 50% (p50) was determined using Probit analysis and used as a measure of relative seed longevity between species. Among Nepeta species, p50 at 45°C and 60% RH varied from 4.38 d to 16 d. Results indicated that based on the artificial aging longevity, in the gene banks the germination test intervals of species N. pogonosperma, N. haussknechtii, N. glomerulosa, N. cataria, N. depauperata can be ten years. But the germination test intervals of N. menthoides, N. nuda, N. schirazana and N. oxydonata should be five years, and even re-collecting their seeds can be a more appropriate strategy to protect them in ex-situ conditions.

کلیدواژه‌ها [English]

  • Artificial aging
  • Germination rate
  • Mean germination time
  • Species diversity
Agrawal, R.L. 2004. Seed Technology. New Delhi, Oxford IBH Pub. Pp. 104-6. (Book)
Ali, N., Probert, R., Hay, F., Davies, H. and Stuppy, W. 2007 Post-dispersal embryo growth and acquisition of desiccation tolerance in Anemone nemorosa L. seeds. Seed Science Research 17: 155–163. DOI:10.1017/S0960258507783149 (Journal)
Bekker, R.M., Bakker, J.P., Ozinga, W.A. and Thompson, K. 2003. Seed traits: essential for understanding seed longevity. Annals of Applied Biology, 69: 1–9. (Journal)
Bewley, J.D., Bradford, K., Hilhorst, H. and Nonogaki, H. 2013. Seeds. Physiology of development, germination and dormancy. 3rd ed. Berlin: Springer. (Book)
Chadha, A. Florentine, S.K. Dhileepan, K. and Turville, C. 2022. Assessing Seed Longevity of the Invasive Weed Navua Sedge (Cyperus aromaticus), by Artificial Ageing. Plants, 11: 3469. DOI:10.3390/plants11243469. (Journal)
Company, T., Soriano, P., Estrelles, E. and Mayoral, O. 2019. Seed bank longevity and germination ecology of invasive and native grass species from Mediterranean wetlands. Folia Geobotanica, 54: 151–61. DOI:10.1007/s12224-019-09350-7 (Journal)
Daws, M.I., Ballard, C., Mullins, C.E., Garwood, N.C., Murray, B. and Pearson, T.R.H. 2007. Allometric relationships between seed mass and seedling characteristics reveal trade-offs for neotropical gap-dependent species. Oecologia. 154: 445–454. DOI:10.1007/s00442-007-0848-2 (Journal)
Dowsett, C., James, T. and Trivedi, P. 2012. Adaption of a technique for the accelerated aging of weed seeds to evaluate their longevity. New Zealand Plant Protection, 65: 69–73. DOI:10.30843/nzpp.2012.65.5427. (Journal)
Ellis, R.H. and Roberts, E.H. 1980. Improved equations for the prediction of seed longevity. Annals of Botany 45: 13–30. (Journal)
Faith, D. 2018. Biodiversity’s option value: a comment on Maier. Ambio, 47: 735–6. DOI:10.1007/s13280-018-1069-0 (Journal)
FAO, 2014. Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rev. ed., FAO, Rome. (Book)
Fenollosa, E., Jené, L. and Munné-Bosch, S. 2020. A rapid and sensitive method to assess seed longevity through accelerated aging in an invasive plant species. Plant Methods, 16: 1–11. DOI:10.1186/s13007-020-00607-3  (Journal)
Finch-Savage, W.E. and Bassel, G.W. 2016. Seed vigor and crop establishment: extending performance beyond adaptation. Journal of experimental Botany, 67(3): 567–591. DOI:/10.1093/jxb/erv490 (Journal)
Hampton, J.G. and TeKrony, D.M. 1995. Handbook of vigor test methods. International Seed Testing Association, Zurich. 117 p. (Book)
Hay, F.R., Valdez, R., Lee, J.S., Sta Cruz, P.C. 2019. Seed longevity phenotyping: recommendations on research methodology. Journal of experimental Botany, 70(2): 425–34. DOI:10.1093/jxb/ery358 (Journal)
Hay, F.R. and Whitehouse, K.J. 2017. Rethinking the approach to viability monitoring in seed genebanks. Conservation Physiology, 5(1): 9. DOI:10.1093/conphys/cox009 (Journal)
Hay, F.R., Klin, J. and Probert. R.J. 2006. Can a post-harvest ripening treatment extend the longevity of Rhododendron L. seeds? Scientia Horticulturae, (Amsterdam) 111: 80–83. DOI:10.1016/j.scienta.2006.09.006 (Journal)
Liu, K., Baskin, J. M., Baskin, C. C., Bu, H., Liu, M., Liu, W., & Du, G. (2011). Effect of storage conditions on germination of seeds of 489 species from high elevation grasslands of the eastern Tibet Plateau and some implications for climate change. American Journal of Botany, 98(1), 12–19. DOI:10.1016/j.scienta.2006.09.006 (Journal)
Long, R.L., Panetta, F.D., Steadman, K.J., Probert, R.J., Bekker, R.M., Brooks, S. and Adkins, S.W. 2008. Seed persistence in the field may be predicted by laboratory controlled aging. Weed Science, 56(4): 523–528. DOI:10.1614/WS-07-189.1 (Journal)
Long, R.L., Kranner, I., Panetta, F.D., Birtic, S., Adkins, S.W. and Steadman, K.J. 2011. Wet-dry cycling extends seed persistence by re-instating antioxidant capacity. Plant Soil, 338: 511–519. DOI:10.1007/s11104-010-0564-2 (Journal)
Maier, D.S. 2018. Should biodiversity and nature have to earn their keep? What it really means to bring environmental goods into the marketplace. Ambio, 47(4): 477–492. DOI: 10.1007/s13280-017-0996-5  (Journal)
Mavi, K., Demir, I. and Matthews, S. 2010. Mean germination time estimates the relative emergence of seed lots of three cucurbit crops under stress conditions. Seed Science and Technology, 38: 14–25. DOI:10.15258/sst.2010.38.1.02 (Journal)
MedCalc. 2016. MedCalc Statistical Software Version 16.4.3. https://www.medcalc.org.
Mozaffarian, V.A. 2006. Dictionary of Iranian Plant Names: Latin-English-Persian. 4th Ed. Farhang Moaser Press. Tehran. 360 p. (In Persian) (Book)
Newton, R., Hay, F. and Probert, R. 2014. Protocol for comparative seed longevity testing. In: Technical information Sheet_01. Millennium Seed Bank Partnership, Royal Botanic Gardens, Kew. (Book)
Pereira Lima J.J., Buitink, J., Lalanne, D., Rossi, R.F. and Silva, E.A.A. 2017. Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS One, 12(7): e0180282.  DOI:10.1371/journal.pone.0180282  (Journal)
Powell, A.A., Don, R., Haigh, P., Phillips, G., Tonkin, J.H.B. and Wheaton, O.E. 1984. Assessment of the repeatability of the controlled deterioration test both within and between laboratories. Seed Science and Technology, 12: 421–427. (Journal)
Powell, A.A. and Matthews, S. 2005. Towards the validation of the controlled deterioration vigour test for small-seeded vegetables. Seed Testing International, 129: 21–24. (Journal)
Rajjou, L. and Debeaujon, I. 2008. Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 331(10): 796–805. DOI:10.1016/j.crvi.2008.07.021  (Journal)
 
Priestley D, Cullinan V, Wolfe J (1985) Differences in seed longevity at the species level. Plant Cell Environ 8:557-562. DOI:10.1111/j.1365-3040.1985.tb01693.x  (Journal)
probert, R.J., Daws, M.I. and Hay, F.R. 2009. Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Annals of Botany, 104, 57-69. DOI:10.1093/aob/mcp082 (Journal)
Roberts, E.H. 1973. Predicting the storage life of seeds. Seed Science and Technology, 1: 499-514. (Journal)
Sallon, S., Solowey, E., Cohen, Y., Korchinsky, R., Egli, M., Woodhatch, I., Simchoni, O. and Kislev, M. 2008. Germination, genetics, and growth of an ancient date seed. Science, 320(5882): 1464-1465. DOI:10.1126/science.1153600 (Journal)
Sethi, R., Kaur, N. and Singh, M. 2020. Morphological and physiological characterization of seed heteromorphism in Medicago denticulate Willd. Plant Physiology Reports, 25: 107–119. DOI:10.1007/s40502-019-00496-2 (Journal)
Trapp, A., Dixon, P., Widrlechner, M.P. and Kovach, D.A. 2012. Scheduling viability tests for seeds in long-term storage based on a Bayesian multi-level model. Journal of Agricultural, Biological, and Environmental Statistics, 17: 192-208. DOI:10.1007/s13253-012-0085-y (Journal)
Walters, C. (2003). Optimising seed banking procedures, pp. 723–743. In: R.D. Smith, J.B. Dickie, S.H. Linington, H.W. Pritchard and R.J. Probert (Eds). Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, UK. (Book)
Walters, C., Wheeler, L.M. and Grotenhuis, J.M. 2005. Longevity of seeds stored in a gene bank: species characteristics. Seed Science Research, 15, 1-20. DOI:10.1079/SSR2004195 (Journal)
Yamasaki, F., Domon, E., Tomooka, N., Baba-Kasai, A., Nemoto, H. and Ebana, K. 2020. Thirty-year monitoring and statistical analysis of 50 species’ germinability in genebank medium-term storage suggest specific characteristics in seed longevity. Seed Science and Technology, 48: 269-287. DOI:10.15258/sst.2020.48.2.14 (Journal)
Zhang, K., Zhang, Y., Sun, J., Meng, J. and Tao, J. 2021. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158: 475–485. DOI:10.1016/j.plaphy.2020.11.031  (Journal)