بررسی تأثیر فرم‌های نانو و غیر ‌نانو (توده‌ای) اکسید روی (ZnO) بر جوانه‌زنی بذر و رشد گیاهچه‌های تنباکو Nicotiana tabacum L.))

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی گیاهی، دانشکده علوم، دانشگاه لرستان، خرم اباد، ایران

2 استادیار فیزیولوژی گیاهی، دانشکده علوم، دانشگاه لرستان، خرم اباد، ایران

3 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان، خرم اباد، ایران

چکیده

کاربردهای روزافزون اکسید روی توده‌ای و نانو می‌تواند، سبب آلوده­شدن گسترده محیط زیست گیاهان به این مواد ‌گردد. در این مطالعه تأثیر اکسید ‌روی توده‌ای تجاری (اندازه <1000 نانومتر) و نانواکسید‌ روی (اندازه معادل 25 نانومتر) بر روی جوانه‌زنی و رشد گیاهچه‌های تنباکو، بررسی شد. بذرها در یک طرح کاملاً تصادفی و در 3 تکرار، تحت تیمار 10 سطح (2000، 1000، 500، 100، 50،10، 5،5/2 ،2/0 ،04/0 پی‌پی‌ام) از دو فرم اکسید روی (توده‌ای و نانو) و آب دوبار تقطیر به­عنوان شاهد، قرار گرفتند و جوانه‌زنی در مدت 14‌ روز و نیز برخی صفات کمی و کیفی در روز ‌21 رشد گیاهچه‌ها بررسی شدند. بر اساس نتایج، تیمارها بر ‌درصد جوانه‌زنی نهایی و زمان رسیدن به 50 درصد جوانه‌زنی، اثر مثبت نداشتند، اما میانگین زمان و ضریب یکنواختی جوانه‌زنی، تحت ‌تأثیر غلظت‌های بالا (به­ویژه برای فرم نانو) افزایش یافتند. تیمارهای فرم نانو از 50‌ به بعد و توده‌ای از 100 پی‌پی‌ام به بعد، محدودکننده طول هیپوکوتیل بوده، درحالی­که اثر مهاری بر طول ریشه‌چه از سطوح پایین‌تر فرم توده‌ای (2/0پی‌پی‌ام به بعد) و در تمام سطوح نانو فرم، نمودار گردید. اغلب تیمارها به­ویژه در غلظت‌های بالا، بر‌ شاخص‌ طول هیپوکوتیل نسبی، شاخص تحمل ریشه‌چه، شاخص تحمل جوانه‌زنی، شاخص تحمل طول گیاهچه و ضریب آلومتری تأثیر منفی گذاردند و این اثر مهاری در سطوح پایین‌تری از فرم نانو نسبت به فرم توده‌ای اتفاق افتاد. کاهش رنگ لپه‌ها و خوابیدگی گیاهچه‌ها در غلظت‌های بالاتر از 10 پی‌پی‌ام، می‌تواند به‌دلیل کاهش کلروفیل و تغییر در میزان تنظیم‌کننده‌های رشد، اتفاق افتاده باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of bulk and nano zinc oxide on seed germination and growth indices in tobacco (Nicotiana tabacum L.) seedlings

نویسندگان [English]

  • Maryam Mazaheri Tirani 1
  • Maryam Madadkar Haghjou 2
  • Ahmad Ismaili 3
1 Ph.D Student of Plant Physiology, College of Basic Sciences, University of Lorestan, Khorramabad, Iran
2 Assistant Professor of Plant Physiology, College of Basic Sciences, University of Lorestan, Khorramabad, Iran
3 Associate Professor, Department of Agronomy and Plant Breeding, College of Agriculture, University of Lorestan, Khorramabad, Iran
چکیده [English]

The applications of bulk and nano zinc oxides have been increased recently, which can cause widespread plant's environment contaminations. This study investigated the effects of commercial bulk ZnO (˂1,000 nm) and nano ZnO (25 nm) on Nicotiana tabacum. Seeds were treated with ten concentrations of two forms (bulk and nano) ZnO (0.04, 0.2, 2.5, 5, 10, 50, 100, 500, 1000 and 2000 ppm) and dionized water used as control, at three replications. Number of germinated seeds was counted until 14th days. Some quantify and quality traits were investigated on 21th day. The results showed that both forms had no positive effect onfinal germination percentage (FGP) and time to reach 50% germination (T50%) but mean of germination time (MGT) and coefficient of uniformity of germination (CUG) were increased, especially by high concentrations of nano-form. Nano-ZnO (50 ppm and upper) and the bulk ZnO treatments (100 ppm and upper) decreased the length of hypocotyl, but inhibitory effects on radical length appeared at the lower levels of bulk form (0.2 ppm and upper) and all nano-ZnO levels. Most of treatments, especially at high concentrations, showed a negative effect on the tolerance indices such as relative hypocotyl length, root tolerance, germination tolerance, and allometric coefficient.These inhibitory effects were happened in the lower levels of nano-form compared to bulk-form. Pallid cotyledon’s color and asleep seedlings, which were observed at upper than 100 ppm, could be due to decreased chlorophyll and some changes in the amount of growth regulators.

کلیدواژه‌ها [English]

  • Heavy metal
  • Nano ZnO
  • Nicotiana tabacum
  • Seed germination
  • Seedlings surviva
Adhikari, T., Kundu, S. and Rao, A.S. 2015. Zinc delivery to plants through seed coating with nano zinc oxide particles. Journal of Plant Nutrition, 39(1): 136-146. (Journal)
Amooaghaie, R., Tabatabaei, F. and Ahadi, A.M. 2015. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicology and Environmental Safety, 113: 259-270. (Journal)
Ashkan, A. and Moemeni, J. 2013. Effect of salinity stress on seed germination and seedling vigour indices of two halophytic plant species (Agropyron elongatum and A. pectiniforme). International Journal of Agriculture and Crop Sciences, 5: 2669-2676. (Journal)
Aslani, F., Bagheri, S., Julkapli, N.M., Juraimi, A.S., Hashemi, F.S. and Baghdadi, A. 2014. Effects of engineered nanomaterials on plants growth. The Scientific World Journal, 10: 1-29. (Journal)
Barcelo, J. and Poschenrieder, C. 2004. Structural and ultrastructural changes in heavy metal exposed plants. In: Prasad MNV (eds) Heavy metal stress in plants, 3rd. Springer, Berlin, 223–248. (Book)
Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S. and Dutta, J. 2011. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4): 282-285. (Journal)
Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A. 2007. Zinc in plants. New Phytologist, 173(4): 677-702. (Journal)
Cui, Y. and Zhao, N. 2011. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant, Soil and Environment, 57(1): 34-39. (Journal)
Dezfuli, P.M., Sharif-zadeh, F. and Janmohammadi, M. 2008. Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). ARPN Journal of Agricultural and Biological Science, 3(3): 22-25. (Journal)
Dimkpa, C.O., McLean, J.E., Latta, D.E., Manangón, E., Britt, D.W., Johnson, W.P., Boyanov, M.I. and Anderson, A.J. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9): 1-15. (Journal)
Farashah, H.D., Afshari, R.T., Sharifzadeh, F. and Chavoshinasab, S. 2011. Germination improvement and [alpha]-amylase and [Beta]-1, 3-glucanase activity in dormant and non-dormant seeds of oregano (Origanum vulgare). Australian Journal of Crop Science, 5: 421. (Journal)
Ghazi zadeh Ehsaii, M., Riahi Madvar, A., Rezvani Nejad, A., Jadid Bonyad, F. and Hami Zoafa, N. 2013. Study of ZnO Nano forms in compare to bulk form on morphological indices of Lepidium draba. 1st proceeding of Noano Technology, Benefits and Aplications. 15th Esfand,Hamadan, Iran. (In Persian))Conference)
Han, Y., Hwang, G., Kim, D., Bradford, S.A., Lee, B., Eom, I., Kim, P.J., Choi, S.Q. and Kim, H. 2016. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. Water Research, 90: 247-257. (Journal)
He, J., Ren, Y., Chen, X. and Chen, H. 2014. Protective roles of nitric oxide on seed and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicology and Environmental Safety, 108: 114-119. (Journal)
He, D., Zhang, H. and Yang, P. 2014. The Mitochondrion-located protein OsB12D1 enhances flooding tolerance during seed germination and early seedling growth in Rice. International Journal of Molecular Sciences, 15: 13461-13481. (Journal)
Ho, D.T.H. and Scandalios, J.G. 1975. Regulation of alcohol dehydrogenases in maize scutellum during germination. Plant Physiology. 56: 56-59. (Journal)
Huang, B. 2006. Plant-Environment Interactions. CRC Press, P. 388. (Book)
Jacobs, M., Dolferus, R. and Van Den Bossche, D. 1988. Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants of Arabidopsis thaliana (L.) Heynh. Biochemical Genetics, 26: 105-122. (Journal)
Jayarambabu, N., Kumari, B.S., Rao, K.V. and Prabhu, Y. 2014 Germination and growth characteristics of nungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide
 
vanoparticles. International Journal of Current Engineering and Technology, 4: 3411-3416. (Journal)
Kozhevnikova, A.D., Erlikh, N.T., Zhukovskaya, N.V., Obroucheva, N.V., Ivanov, V.B. and Belinskaya, A.A. 2014. Nickel and zinc effects, accumulation and distribution in ruderal plants Lepidium ruderale and Capsella bursa-pastoris. Acta Physiologiae Plantarum, 36(12): 3291-3305. (Journal)
Kubala, S., Wojtyla, L., Quinet, M., Lechowska, K., Lutts, S. and Garnczarska, M. 2015. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Journal of Plant Physiology, 183: 1-12. (Journal)
Kumar, S., Patra, A.K., Datta, S.C., Rosin, K.G. and Purakayastha, T.J. 2015. Phytotoxicity of nanoparticles to seed germination of plants. International Journal of Advanced Research, 3(3): 854-865. (Journal)
Lin, D. and Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root Growth. Environmental Pollution, 150(2): 243-250. (Journal)
López-Moreno, M.L., Botez, C.E., De La Rosa, C., Hernández-Viezcas, J.A., Castillo-Michel, H., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and Technology, 44(19): 7315–7320. (Journal)
Moezzi, A., McDonagh, A.M. and Cortie, M.B. 2012. Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185: 1-22. (Journal)
Monica, R.C. and Cremonini, R. 2009. Nanoparticles and higher plants. Caryologia, 62(2): 161-165. (Journal)
Mousavi Kouhi, S.M., Lahoutia, M., Ganjealia, A. and Entezarib, M.H. 2014. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed Brassica napus L: investigating a wide range of concentrations. Toxicological and Environmental Chemistry, 861-868. (Journal)
Mut, Z. and Akay, H. 2010. Effect of seed size and drought stress on germination and seedling growth of naked oat (Avena sativa L.). Bulgarian Journal of Agricultural Science, 16: 459-467. (Journal)
Patra, P., Choudhury, S.R., Mandal, S., Basu, A., Goswami, A., Gogoi, R., Srivastava, C. and Kumar, R. 2013. Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. Advanced Nanomaterials and Nanotechnology, 143: 301-309. (Journal)
Prasad, T.N.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6): 905-927. (Journal)
Rao, N.K., Hanson, J., Dulloo, M.E., Ghosh, K. and Nowell, A. 2006. Manual of seed handling in genebanks. Vol 8. Bioversity International. (Book)
Raskar, S. and Laware, S. 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences, 3 (2): 467-473. (Journal)
Rossato, L., Mac Farlane, J., Whittaker, M., Pudmenzky, A., Doley, D., Schmidt, S. and Monteiro, M. 2011. Metal-binding particles alleviate lead and zinc toxicity during seed germination of metallophyte grass Astrebla lappacea. Journal of Hazardous Materials, 190(1): 772-779. (Journal)
Wang, Y., Wang, Y., Kai, W., Zhao, B., Chen, P., Sun, L., Ji, K., Li, Q., Dai, S. and Sun, Y. 2014. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn 2+, NaCl and simulated acid rain stresses. Plant Physiology and Biochemistry, 76: 67-76. (Journal)
Wang, X., Yang, X., Chen, S., Li, Q., Wang, W.X., Wang, L. and Wang, S. 2016. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers in Plant Science, 6: 1-9. (Journal)