Exploiting Seed and Soil Microbiomes: Innovations for Enhancing Crop Resilience and Productivity

Document Type : Research Paper

Authors

1 Assistant Professor, Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

10.22124/jms.2025.9416

Abstract

The seed microbiome comprises a diverse assemblage of beneficial microorganisms, including bacteria and fungi, which inhabit either the internal tissues (endophytes) or the external surfaces (epiphytes) of plant seeds. These microorganisms play pivotal roles in seed germination, early seedling development, nutrient acquisition, and the enhancement of plant resistance to both biotic and abiotic stresses. In recent years, seed biopriming has emerged as one of the most efficient biological strategies for the targeted modulation and engineering of the seed microbiome. By promoting the early establishment of beneficial microorganisms, this approach enhances rhizosphere microbiome stability and improves plant resilience. This review provides a comprehensive overview of the composition, origin, and complex interactions of the seed microbiome with soil and the host plant, and critically examines recent advances in technologies such as seed biopriming, seed coating, multi-omics approaches, and synthetic microbial communities. Evidence from recent studies indicates that the rational design of the seed microbiome can increase crop productivity by 10–20% while reducing dependence on chemical inputs. The integration of seed microbiome engineering with climate-smart agriculture and genome-editing technologies offers a promising framework for the development of resilient bio-based seeds and for ensuring food security under changing climatic conditions.

Keywords


Ajijah, N., Fiodor, A., Kazimierczuk, K., Urbaniak, M., Enow, E., Stasiuk, R., Stepien, L., Dziewit, L. and Pranaw, K. 2024. Pseudomonas protegens ML15 and Trichoderma koningiopsis Tr21 co-culture: A potent strategy for suppressing Fusarium cerealis infections in wheat through augmented antifungal metabolite production. Biological Control, 198: 105621. https://doi.org/10.1016/j.biocontrol.2024.105621 (Journal)
Arnault, G., Marais, C., Préveaux, A., Briand, M., Poisson, A.S., Sarniguet, A., Barret, M. and Simonin, M. 2024. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiology Ecology, 100(4): fiae027. https://doi.org/10.1093/femsec/fiae027 (Journal)
Bao, Z., Sasaki, K., Okubo, T., Ikeda, S., Anda, M., Hanzawa, E., Kakizaki, K., Sato, T., Mitsui, H. and Minamisawa, K. 2013. Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes and Environments, 28(4): 487-90. https://doi.org/10.1264/jsme2.me13049 (Journal)
Berendsen, R.L., Pieterse, C.M.J., and Bakker, P.A.H.M. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8): 478-486. https://doi.org/10.1016/j.tplants.2012.04.001 (Journal)
Berg, G., and Raaijmakers, J.M. 2018. Saving seed microbiomes. International Society for Microbial Ecology, 12: 1167-1170. https://doi.org/10.1038/s41396-017-0028-2 (Journal)
Chin, J.M., Lim, Y.Y. and Ting, A.S.Y. 2022. Biopriming Pseudomonas fluorescens to vegetable seeds with biopolymers to promote coating efficacy, seed germination and disease suppression. Journal of the Saudi Society of Agricultural Sciences, 21(8): 493-505. https://doi.org/10.1016/j.jssas.2022.02.002 (Journal)
Dubey, A., Malla, M.A., Vimal, S.R., Kumar, A., Prasad, S.M. and Khan, M.L. 2005. Plant-microbiome engineering: synergistic microbial partners for crop health and sustainability. Plant Plant Growth Regulation, 105: 1825-1839. https://doi.org/10.1007/s10725-025-01385-5 (Journal)
Fadiji, A.E., Lanrewaju, A.A., Omomowo, I.O., Parra-Cota, F.I. and de los Santos-Villalobos, S. 2025. Harnessing seed endophytic microbiomes: A hidden treasure for enhancing sustainable agriculture. Plants, 14(15): 2421. https://doi.org/10.3390/plants14152421 (Journal)
Figueredo, E.F., Batista, B.D., de Oliveira, M.E., Andrade, J.S., Ferrari, A.S., Schwan, R.F., da Silva, C.C. and Quecine, M.C. 2023. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, 266: 127218. https://doi.org/10.1016/j.micres.2022.127218 (Journal)
Garrido-Sanz, D. and Keel, C. 2025. Seed-borne bacteria drive wheat rhizosphere microbiome assembly via niche partitioning and facilitation. Nature Microbiology, 10(5): 1130-1144. https://doi.org/10.1038/s41564-025-01973-1 (Journal)
Hanif, M.S., Tayyab, M., Baillo, E.H., Islam, M.M., Islam, W. and Li, X. 2024. Plant microbiome technology for sustainable agriculture. Frontiers in Microbiology, 15: 1500260. https://doi.org/10.3389/fmicb.2024.1500260 (Journal)
Htwe, A. Z., Moh, S. M., Soe, K. M., Moe, K. and Yamakawa, T. 2019. Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy, 9(2): 77. https://doi.org/10.3390/agronomy9020077 (Journal)
Jha, R., Manonmani, V., Sundaralingam, K., Vanitha, S., Gnanachitra, M., Kalaiselvi, T. and Ali, A.S. 2025. The seed microbiome: microbial hashes for plant wellbeing. Journal of Environmental Biology, 10(1): 007-022. https://doi.org/10.17352/ojeb.000046 (Journal)
Khaledi, N., Dehshiri, A. and Hassani, F. 2021. Effects of seed biopriming with fungus Trichoderma harzianum on secondary metabolites production in cumin (Cuminum cyminum L.). Iranian Journal of Medicinal and Aromatic Plants Research, 37(3): 513-529. https://doi.org/10.22092/ijmapr.2021.352573.2897 (Journal)
Kimotho, R.N. and Maina, S. 2024. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? Journal of Experimental Botany, 75(5): 1289-1313. https://doi.org/10.1093/jxb/erad448 (Journal)
Kwoji, I.D., Aiyegoro, O.A., Okpeku, M. and Adeleke, M.A. 2023. ‘Multi-omics’ data integration: applications in probiotics studies. NPJ Science Food 7, 25. https://doi.org/10.1038/s41538-023-00199-x (Journal)
Lastochkina, O., Yakupova, A., Avtushenko, I., Lastochkin, A. and Yuldashev R. 2023. Effect of seed priming with endophytic Bacillus subtilis on some physio-biochemical parameters of two wheat varieties exposed to drought after selective herbicide application. Plants (Basel), 12(8): 1724. https://doi.org/10.3390/plants12081724 (Journal)
Li, D., Chen, W., Luo, W., Zhang, H., Liu, Y., Shu, D. and Wei, G. 2025. Seed microbiomes promote Astragalus mongholicus seed germination through pathogen suppression and cellulose degradation. Microbiome, 13: 23. https://doi.org/10.1186/s40168-024-02014-5 (Journal)
Liu, S., Wu, J., Cheng, Z., Wang, H., Jin, Z., Zhang, X., Zhang, D. and Xie, J. 2025. Microbe-mediated stress resistance in plants: The roles played by core and stress-specific microbiota. Microbiome, 13(1): 111. https://doi.org/10.1186/s40168-025-02103-z (Journal)
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P. and Niggli, U. 2002. Soil fertility and biodiversity in organic farming. Science, 296(5573): 1694-1697. https://doi.org/10.1126/science.1071148 (Journal)
Matilla, A.J. 2025. Exploring the bacterial microbiota of seeds. Microbial Biotechnology, 18(9): e70230. https://doi.org/10.1111/1751-7915.70230 (Journal)
Miljaković, D., Marinković, J., Tamindžić, G., Đorđević, V., Tintor, B., Milošević, D., Ignjatov, M. and Nikolić, Z. 2022. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to improve seed germination and the initial seedling growth. Plants, 11(15): 1927. https://doi.org/10.3390/plants11151927 (Journal)
Paravar, A., Piri, R., Balouchi, H. and Ma, Y. 2023. Microbial seed coating: An attractive tool for sustainable agriculture. Biotechnology Reports, 37: e00781. https://doi.org/10.1016/j.btre.2023.e00781 (Journal)
Portal-Gonzalez, N., Wang, W., He, W. and Santos-Bermudez, R. 2025. Engineering plant holobionts for climate-resilient agriculture. International Society for Microbial Ecology, 19(1): 158. https://doi.org/10.1093/ismejo/wraf158 (Journal)
Rochefort, A., Simonin, M., Marais, C., Guillerm-Erckelboudt, A.-Y., Barret, M. and Sarniguet, A. 2021. Transmission of seed and soil microbiota to seedlings.  mSystems, 2021 6(3):e0044621. https://doi.org/10.1128/mSystems.00446-21 (Journal)
Romão, I.R., do Carmo Gomes, J., Silva, D. and Vilchez, J.I. 2025. The seed microbiota from an application perspective: an underexplored frontier in plant–microbe interactions. Crop Health, 3: 12. https://doi.org/10.1007/s44297-025-00051-6 (Journal)
Sahoo, A., Yadav, G., Mehta, T., Meena M. and Swapnil, P. 2025. Omics-driven insights into plant growth-promoting microorganisms for sustainable agriculture. Discover Sustainability, 6: 659. https://doi.org/10.1007/s43621-025-01582-2 (Journal)
Singh, T., Garg, D., Kaur, K., Singh, R., Singh, S., Prasad, N. and Tripathi, M. 2025. Seed microbiomes: Guardians of plant growth and development. Journal of Pure and Applied Microbiology, 19(3): 1599-1613. https://doi.org/10.22207/JPAM.19.3.07 (Journal)
Sun, Z., Adeleke, B.S., Shi, Y. and Li, C. 2023. The seed microbiomes of staple food crops. Microbial Biotechnology, 16(12): 2236-2249. https://doi.org/10.1111/1751-7915.14352 (Journal)
Swain, H., Adak, T., Mukherjee, A.K., Sarangi, S., Samal, P., Khandual, A., Jena, R., Bhattacharyya, P., Naik, S.K., Mehetre, S.T., Baite, M.S., Kumar, M.S. and Zaidi, N.W. 2021. Seed biopriming with trichoderma strains isolated from tree bark improves plant growth, antioxidative defense system in rice and enhance straw degradation capacity. Frontiers in Microbiology, 12: 633881. https://doi.org/10.3389/fmicb.2021.633881 (Journal)
Trivedi, P., Mattupalli, C., Eversole, K. and Leach, J.E. 2021. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist, 230(6): 2129-2147. https://doi.org/10.1111/nph.17319 (Journal)
Truyens, S., Weyens, N., Cuypers, A. and Vangronsveld, J. 2015. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environmental Microbiology Reports, 7(1): 40-50. https://doi.org/10.1111/1758-2229.12181 (Journal)
Wang, G., van der Putten, W.H., Klironomos, J., Zhang, F. and Zhang, J. 2025. Steering plant-soil feedback for sustainable agriculture. Science, 389: 6758. https://doi.org/10.1126/science.ads2506 (Journal)
Yang, P., Lu, L., Condrich, A., Muni, G. A., Scranton, S., Xu, S., Xia, Y. and Huang, S. 2025. Innovative approaches for engineering the seed microbiome to enhance crop performance. Seeds, 4(2): 24. https://doi.org/10.3390/seeds4020024 (Journal)
Zhou, X., Wang, J.T., Zhang, Z.F., Li, W., Chen, W. and Cai, L. 2020. Microbiota in the rhizosphere and seed of rice from northeast and central-south China. Frontiers in Microbiology, 11: 995. https://doi.org/10.3389/fmicb.2020.00995 (Journal)