The effect of titanium dioxide nanoparticles on improving Faba bean (Vicia faba L.) seed germination under drought stress

Document Type : Research Paper

Authors

1 Professor, Department of Agronomy and plant breeding, Faculty of Agriculture and natural resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Postdoctoral Researcher of Crop Physiology, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

10.22124/jms.2025.9375

Abstract

Drought stress is one of the most significant limiting factors in agricultural production. To investigate the effect of priming with titanium dioxide nanoparticles (TiO2 NPs) on faba bean seeds (Vicia faba L.) under drought stress, a factorial experiment based on a completely randomized design with three replications was conducted at the Faculty of Agriculture Science and Natural Resources, Mohaghegh Ardabili University in the winter of 2024. Experimental treatments included seed priming with TiO2 NPs (0, 25, 50, and 100 mg L-1) and drought stress (0, -0.2, -0.5, and -0.7 Bar). TiO2 NPs were synthesized by solgel method. FTIR, XRD, and SEM chemical analysis were used to identify the bonds and structure of the NPs. Seed germination percentage and related traits such as seedling length and weight indices, catalase enzyme activity, lipid peroxidation, and proline content were measured.The osmotic potential -0.7 Bar caused a 76% reduction in faba bean seed germination compared to the control. Concentrations of 25 and 50 mg L-1 of TiO2 NPs enhanced the germination percentage, germination rate, radicle and plumule length, seedling fresh and dry weight, proline content, lipid peroxidation, and catalase enzyme activity at all stress levels. Increasing the concentration of TiO2 NPs to 100 mg L-1 led to a synergistic effect under stress conditions, resulting in a twofold increase in the activity of enzymatic and non-enzymatic antioxidants, alongside a decrease in the germination percentage and its related traits compared to no seed priming. The positive and negative effects of TiO2 NPs in alleviating the severity of drought stress and their impact on faba bean seed germination and seedling growth depended on the concentrations used.

Keywords


Abdel Latef, A. A., Hasanuzzaman, M. and Tahjib-Ul-Arif, M. 2021. Mitigation of salinity stress by exogenous application of cytokinin in faba bean (Vicia faba L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49:1-22. DOI:10.15835/nbha49112192 (Journal)
Abid, G., Hessini, K., Aouida, M., Aroua, I., Baudoin, J. P., Muhovski, Y., Mergeai, G., Sassi, K., Machraoui, M., Souissi, F. and Jebara, M. 2017. Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress. Biotechnology, Agronomic, Soc Environnement, 21:146-159. DOI: 10.25518/1780-4507.13579 (Journal)
Ahmadnia, F. and Ebadi, A. 2024. Evaluation of improving Sunn hemp (Crotalaria juncea) seed germination with titanium dioxide (TiO2) nanoparticles under salinity stress. Iranian Journal of Seed Science and Research, 11(1): 69-87. DOI: 10.22124/jms.2024.8039 (In Persian) (Journal)
Ahmadnia, F., Ebadi, A., Alebrahim, M. T., Parmoon, G., Feizpoor, S. and Hashemi, M. 2025. The efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 nanoparticles in controlling weed seed germination. Agronomy, 15(795): 1-21. DOI: 10.3390/agronomy15040795 (Journal)
Ahmadnia, F., Ebadi, A., Hashemi, M., Ghavidel, A. and Alebrahim, M. T. 2023. Investigating the effect of aqueous extracts of sunn hemp (Crotalaria juncea) and oats (Avena sativa L.) on the germination of wild mustard weed (Sinapis arvensis). Iranian Journal of Seed Science and Research, 10(2): 1-19. DOI: 10.22124/jms.2023.760 (In Persian) (Journal)
Alharby, H. F. M., Rizwan, A., Iftikhar, K. M., Hussaini, M. Z., Ur Rehman, A. A., Bamagoos, B. M., Alharbi, M., Asrar, T., Yasmeen, S. and Ali, S. 2021.  Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat.  Ecotoxicology and Environmental Safety, 221(2021),112436:1-10. DOI: 10.1016/j.ecoenv.2021.112436 (Journal)
Amooaghaie, R., Majidi, M. and Farhadian, S. 2021. Impact of nano -TiO2 on salt stress tolerance of Carum copticum. Journal of Plant Process and Function Iranian Society of Plant Physiology, 11(48):19-33. http://jispp.iut.ac.ir/article-1-1560-fa.html (In Persian) (Journal)
Aragay, G., Pino, F. and Merkoçi, A. 2012. Nanomaterials for sensing and destroying pesticides. Chemical Review,112(10): 5317-5338. DOI:10.1021/cr300020c (Journal)
Ashraf, M. and Foolad, M. R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.  DOI: 10.1016/j.envexpbot.2005.12.006  (Journal)
Asli, S. and Neumann, P. M. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport.   Plant, Cell and Environment, 32(5): 577-584. https://www.ncbi.nlm.nih.gov/pubmed/19210640 (Journal)
Bates, L. S., Walderen, R. D. and Taere I. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207. DOI: 10.1007/BF00018060 (Journal)
Cox, J. D., Silveiro, I. and Garcia de Abajo, F. J. 2016. Quantum effects in the nonlinear response of Graphene plasmons. ACS Nano Journal, 10(2): 1995-2003. DOI:10.1021/acsnano.5b06110. (Journal)
Etemadi, F., Barker, A. V. and Hashemi, M. 2018. Nutrient accumulation in faba bean varieties. Communication Soil Science Plant Analysis, 49(16): 2064-2073. DOI:10.1080/00103624.2018.1495729 (Journal)
Faraji, J. and Sepehri, A. 2019. Ameliorative effects of TiO2 nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science, 41(3): 309-317. DOI:10.1590/2317-1545v41n3213139 (Journal)
Ghassemi-Golezani, K. and Hosseinzadeh-Mahootchy, A. 2009. Changes in seed vigour of faba bean (Vicia faba L.) cultivars during development and maturity. Seed Science and Technology, 37(3): 713-720. DOI: 10.15258/sst.2009.37.3.18 (Journal)
Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biocenology, 48(12): 909-930. DOI: 10.1016/j.plaphy.2010.08.016 (Journal)
Hatami, M., Ghorbanpour, M. and Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological Environment, 8(22): 53-59.  (Journal)
Kabbadj, A., Makoudi, B., Mouradi, M., Pauly, N., Frendo, P. and Ghoulam, C. 2017. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba. PLoS ONE, 12(12): e0190284, 1-19. DOI: 10.1371/journal.pone.0190284 (Journal)
 
Khalifa, A. M., Safhi, F. A. and Elsherif, D. E. 2024. Green synthesis of a dual-functional sulfur nanofertilizer to promote growth and enhance salt stress resilience in faba bean. BMC Plant Biology, 24, 607, 1-16. DOI:10.1186/s12870-024-05270-7 (Journal)
Khan, M. N., AlSolami, M. A., Basahi, R. A., Siddiqui, M. H., Al-Huqail, A. A., Abbas, Z. K., Siddiqui, Z. H., Ali, H M. and Khan, F. 2020. Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L. Ecotoxicology Environmental Safety, 190:110152. DOI: 10.1016/j.ecoenv.2019.110152 (Journal)
Khandekar, D. C., Bhattacharyya, A. R. and Bandyopadhyaya, R. 2021. Role of axial versus radial pore orientation in mesoporous silica particles, on its effect in photocatalysis via impregnated TiO2 nanoparticles in pores. Chemical Engineering Journal Advances, 5 (2021): 100075, 1-8. DOI: 10.1016/j.ceja.2020.100075 (Journal)
Kobayashi, K., Kubota, H., Hojo, R. and Miyagawa, M. 2019. Effective dispersal of titanium dioxide nanoparticles for toxicity testing. Journal of Toxicological Sciences, 44(8):515–521. DOI:10.2131/jts.44.515 (Journal)
Ma, X., Geiser-Lee, J., Deng, Y. and Kolmakov, A. 2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16): 3053-3061. DOI: 10.1016/j.scitotenv.2010.03.031 (Journal)
Maalouf, F., Abou-Khater, L., Babiker, Z., Jighly, A., Alsamman, AM., Hu, J., Ma, Y., Rispail, N., Balech, R., Hamweih, A., Baum, M. and Kumar, S. 2022a. Genetic dissection of heat stress tolerance in faba bean (Vicia faba L.) using GWAS. Plants, 11(9): 1108, 1-17.  DOI:10.3390/plants11091108 (Journal)
Maalouf, F., Ahmed, S. and Bishaw, Z. 2022b. Chapter 6. In: Faba Bean. Beans and Peas. Amsterdam, The Netherlands: Elsevier, pp: 105–131. (Book)
Maguire, J. D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2(2):176-177. DOI:10.2135/cropsci1962.0011183X000200020033x (Journal)
Marambe, B. and Ando, T. 1992. Phenolic acids as potential seed germination-inhibitors in animal-waste composts. Soil Science and Plant Nutrition, 38(4): 727-733. DOI:10.1080/00380768.1992.10416703 (Journal)  
Martínez, J. P., Silva, H., Ledent, J. F. and Pinto, M. 2007. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26(1):30-38. DOI: 10.1016/j.eja.2006.08.003 (Journal)  
Mathew, S. S., Sunny, N. E. and Shanmugam, V. 2021. Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorganic Chemistry Communications, 126: 108485, 1-18. DOI: 10.1016/j.inoche.2021.108485 (Journal) 
Michel, B. E. and Kaufmann, M. R. 1973. The osmotic potential of polyethylene glycol 6000.  Plant Physiology, 51(5):914-916. DOI: 10.1104/pp.51.5.914 (Journal) 
Mohammadi, H., Esmailpour, M. and Gheranpaye, A. 2016. Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological    characteristics    of    dragonhead (Dracocephalum moldavica L.) plants. Acta Agriculturae Slovenica, 107(2): 385-396. DOI: 10.14720/aas.2016.107.2.11 (Journal) 
Mustafa, H., Ilyas, N., Akhtar, N., Raja, N. I., Zainab, T., Shah, T., Ahmad, A. and Ahmad, P. 2021. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicology and Environmental Safety, 2021(223): 112519, 1-15. DOI: 10.1016/j.ecoenv.2021.112519 (Journal) 
Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N. and Behra, R. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42(23): 8959-8964. DOI: 10.1021/es801785m (Journal) 
Noman, M. T., Ashraf, M. A. and Ali, A. 2019. Synthesis and applications of nano-TiO2: A review. Environmental Science and Pollution Research, 26: 3262-3291. DOI: 10.1007/s11356-018-3884-z (Journal) 
 
Ouji, A., Naouari, M., Mouelhi, M. and Ben Younes, M. 2017. Yield and yield components of faba bean (Vicia faba L.) as influenced by supplemental irrigation under semi-arid region of Tunisia. World Journal of Agricultural Research, 5(1):52-57. DOI: 10.12691/wjar-5-1-7 (Journal) 
Paramo, L. A., Feregrino-Pe´rez, A. A., Guevara, R., Mendoza, S. and Esquivel, K. 2020. Nanoparticles in agroindustry: applications, toxicity, challenges, and trends. Nanomaterials, 10:1654. DOI: 10.3390/nano10091654 (Journal) 
Pazhouhan, I., Jalali, S. Gh. A., Atabati, H., Zarafshar, M. and Sattarian, A. 2016. Comparison of carbon nanotubes with chemical and physical treatments to break seed dormancy of Myrtus communis L. Journal of Botany Research, 29(2): 300-308. DOI: 20.1001.1.23832592.1395.29.2.6.0 (Journal)   
Perry, D.A. 1991. Methodology and application of vigor tests. International Seed Testing Association. Zurich. Switzerland. 275p. (Book)
Pham, X. N., Pham, D. T., Ngo, H. S., Nguyen, M. B. and Doan, H. V. 2021. Characterization and application of C–TiO2 doped cellulose acetate nanocomposite film for removal of Reactive Red-195. Chemical Engineering Communications, 208(3): 304-317. DOI: 10.1080/00986445.2020.1712375 (Journal)
Raliya, R., Biswas, P. and Tarafdar, J. C. 2015a. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports, 2015(5): 22-26. DOI: 10.1016/j.btre.2014.10.009 (Journal) 
Raliya, R., Nair, R., Chavalmane, S., Wang, W. N. and Biswas, P. 2015b. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12): 1584-1594. DOI:10.1039/c5mt00168d (Journal) 
Ramadan, T., Sayed, S. A., Abd-Elaal, A. K. A. and Amro, A. 2022. The combined effect of water deficit stress and TiO2 nanoparticles on cell membrane and antioxidant enzymes in Helianthus annuus L. Physiology and Molecular Biology of Plants, 28(2): 391-409. DOI: 10.1007/s12298-022-01153-z (Journal) 
Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S. and Brestic, M. 2017. Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry, 78:1-16. DOI: 10.3389/ fchem.2017.00078 (Journal) 
Reddy, A. R., Chaitanya, K. V. and Vivekanandan, M. 2004. Drought–induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(16): 1189-1202. DOI: 10.1016/j.jplph.2004.01.013 (Journal)
Rico, C. M., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. 2015. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and Plant Science, 2:1–17. DOI: 10.1007/978-3-319-14502-0_1 (Journal)
Safaeipour, M., Nabavi Kalat, M. and Aghighi Shahverdi, M. 2023. Assessing the impact of seed priming by nanomaterials on stevia germination and biochemical attributes under drought stress. Fundamental and Applied Agriculture, 8(3): 615-626. DOI: 10.5455/faa.160768 (Journal)
Sant´as-Miguela, V., Arias-Estevez, M., Rodriuez-Seijo, A. and Arenas-Lago, D. 2023. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution, 334(2023),122222: 1-17.  DOI: 10.1016/j.envpol.2023.122222 (Journal)
Sauret-Güeto, S., Calder, G. and Harberd, N. P. 2012. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell   elongation   without   maintaining   transverse   orientation   of   microtubules on the outer tangential wall of epidermal cells.  Plant Journal, 69(4): 628-639. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2011.04817.x (Journal)
Scott, S. J., Jones, R. A. and Williams, W. A. 1984. Review of data analysis methods for seed germination. Crop Science, 24(6): 1192-1199. DOI: 10.2135/cropsci1984.0011183X002400060043x (Journal)
Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P. and Dimkpa, C. A. 2015. Review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2): 1-21. DOI: 10.1007/s11051-015-2907-7 (Journal)
Sharif, H., Mehmood, A., Ulfat, A., Ahmad, K. S., Hussain, I. and Khan, R. T. 2021. Environmentally sustainable production of silver nanoparticles and their effect on Glycine max L. Seedlings. Gesunde Pflanzen, 73(2021): 95-103. DOI: 10.1007/ s10343-020-00532-4. (Journal)
 
Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M. and Al-Khaishany, M. Y. 2015. Role of nanoparticles in plants. In nanotechnology and plant sciences. Springer International Publishing, Chapter 2:19-35. DOI: 10.1007/978-3-319-14502-0_2 (Journal)
Stewart, R. C. and Beweley, J. D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2): 245248. DOI: 10.1104/pp.65.2.245 (Journal)
Stoddard, F. L., Balko, C., Erskine, W., Khan, H. R., Link, W. and Sarker, A. 2006. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica, 147:167-186. DOI: 10.1007/s10681-006-6963-z (Journal)
Sudhakar, C., Lakshmi, A. and Giridara Kumar, S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 167(3): 613-619. DOI: 10.1016/S0168-9452(01)00450-2 (Journal)
Tan, W., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. 2018. Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review. Environmental Science: Nano Journal, 5(8):257-278. DOI:10.1039/ C7EN00985B (Journal)
Wahid, I., Kumari, S., Ahmad, R., Hussain, S. J., Alamri, S., Siddiqui, M. H. and Khan, M. I. R. 2020. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules, 10(11):1506, 1-19. DOI:10. 3390/biom10111506 (Journal)
Wang, K., Zhuo, Y., Chen, J., Gao, D., Ren, Y., Wang, C. and Qi, Z. 2020. Crystalline phase regulation of anatase–rutile TiO2 for the enhancement of photocatalytic activity. RSC advances, 10(71): 43592-43598. DOI: 10.1039/d0ra09421h (Journal)
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., Chen, S. 2021. Response mechanism of plants to drought stress. Horticulturae 7(3):50, 1-36. DOI:10.3390/horticulturae7030050 (Journal)
Yin, C., Peng, Y., Zang, R., Zhua, Y. and Li, C. 2005. Adaptive responses of Populus kangdingensis to drought stress. Physiology Plant, 123(4): 445-451. DOI:10.1111/j.1399-3054.2005.00477.x (Journal)
Yuan, X., Wang, X., Zhang, Sh., Dong, X., Zhang, Sh., Zhou, W., Zhang, Ch. and Luo, Y. 2021. Synergistic enhancement of photocatalytic performance of mesoporous TiO2 enabled by tunable crystal phase and hybridization with graphene oxide. Chemistry Select, 6(23): 5791-5800. DOI:10.1002/slct.202100784 (Journal)
Zheng, L., Hong, F., Lu, S. and Liu, C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1): 83-91. DOI: 10.1385/BTER:104:1:083 (Journal)