The biological priming effect of Astragalus cicer and Astragalus cyclophyllon seeds by nitrogen-fixing Pseudomonas that located in rhizobia nodules and rhizosphere

Document Type : Research Paper

Authors

1 M.Sc. graduate of Plant Protection, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Professor in the Department of Plant Protection, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Associate Professor, Seed and Plant Certification and Registration Institute. Agricultural Research, education and Extension Organization (AREEO). Tehran, Iran

10.22124/jms.2024.8798

Abstract

Despite the importance of some Astragalus species in providing fodder in pastures due to difficult germination and weak seedlings, the development of commercial cultivation of these plants has not been considered. Several researches have recommended the potential of probiotic bacteria, especially some Pseudomonas isolates, to increase germination and improve vegetative vigor of plants.
In addition to isolating Pseudomonas strains with the ability to nitrogen fixation from the rhizosphere and rhizobia nodules of Astrgalus cicer and A. cyclophyllon, which established in the experimental fields in Alborz province, the present research investigated the effect of the selected Pseudomonas on the growth improvement of mentioned species. Based on preliminary biochemical assays and sequencing, three Pseudomonas species with plant growth-promoting traits were identified from the rhizobia nodule and rhizosphere. Based on the 16S rDNA sequence, the Rh13 strain showed the most similarity (99.83%) to Pseudomonas putida species and in all plant growth-promoting traits such as nitrogen fixation, Phosphate solubilization, ndole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylate deaminase production (ACC deaminase) and phytase production were evaluated as positive. Compared to the control, this isolate significantly improved vegetative factors in both Astragalus species. Seed treatment with two isolates Me41 and Rh3 also increased the germination rate by 10 and 13%, respectively. The results of principal component analysis showed that the most important factor differentiating the strains in terms of growth-promoting traits was nitrogen fixation as a vital macronutrient in improving seedling growth. Seed treatment with useful isolates of Pseudomonas can improve the faster establishment of Astragalus species in competition with other pasture weeds, restore the beneficial microbial population and increase the richness of the soil through the supply of usable nitrogen and phosphorus for plants.

Keywords


Abdul‐Baki, A.A. and Anderson, J.D. 1973. Vigor determination in soybean seed by multiple criteria 1. Crop science, 13(6): 630-633. DOI: 10.2135/cropsci1973.0011183X001300060013x. (Journal)
Acharya, S.N., Kastelic, J.P., Beauchemin, K.A. and Messenger, D.F. 2006. A review of research progress on cicer milkvetch (Astragalus cicer L.). Canadian Journal of Plant Science86(1): 49-62. Doi: 10.4141/P04-174. (Journal)
Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science26(1): 1-20. DOI: 10.1016/j.jksus.2013.05.001. (Journal)
Ansari, F.A. and Ahmad, I. 2019. Fluorescent Pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Scientific reports, 9(1): 4547. DOI: 10.1038/s41598-019-40864-4. (Journal)
Ardestani, E.G., Tarkesh, M., Bassiri, M., and Vahabi, M.R. 2015. Potential habitat modeling for reintroduction of three native plant species in central Iran. Arid Land. 7: 381-390. DOI: 10.1007/s40333-014-0050-4. (Journal)
Banchio, E., Bogino, P.C., Zygadlo, J. and Giordano, W. 2008. Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochemical Systematics and Ecology, 36(10): 766-771. DOI: 10.1016/j.bse.2008.08.006. (Journal)
Beneduzi, A., Ambrosini, A. and Passaglia, L.M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and molecular biology, 35: 1044-1051. DOI: 10.1590/s1415-47572012000600020 . (Journal)
Bennett, A.J., Mead, A. and Whipps, J.M. 2009. Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biological Control, 51(3): 417-426. DOI: 10.1016/j.biocontrol.2009.08.001. (Journal)
Bent, E., Tuzun, S., Chanway, C.P. and Enebak, S. 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Canadian journal of microbiology, 47: pp.793-800. DOI: 10.1139/cjm-47-9-793. (Journal)
Bhattacharjee, R.B., Singh, A. and Mukhopadhyay, S.N. 2008. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Applied microbiology and biotechnology, 80(2): 199-209. DOI 10.1007/s00253-008-1567-2. (Journal)
Bhattacharyya, P.N. and Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327-1350. DOI: 10.1007/s11274-011-0979-9. (Journal)
Costa-Gutierrez, S.B., Adler, C., Espinosa-Urgel, M. and de Cristóbal, R.E. 2022. Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Applied Microbiology and Biotechnology106(9): 3351-3367. DOI: 10.1007/s00253-022-11881-7. (Journal)
Castagno, L.N., Estrella, M.J., Sannazzaro, A.I., Grassano, A.E. and Ruiz, O.A. 2011. Phosphate‐solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). Journal of applied microbiology, 110(5): 1151-1165. DOI: 10.1111/j.1365-2672.2011.04968.x. (Journal)
Davis, A.M. 1982. Nitrogen production by selected Astragalus species 1. Agronomy Journal, 74(3): 454-456. DOI: 10.2134/agronj1982.00021962007400030014x. (Journal)
del Rosario Cappellari, L., Santoro, M.V., Nievas, F., Giordano, W. and Banchio, E. 2013. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Applied soil ecology70: 16-22. DOI: 10.1016/j.apsoil.2013.04.001. (Journal)
Dobbelaere, S., Vanderleyden, J. and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical reviews in plant sciences, 22(2): 107-149. DOI: 10.1080/713610853. (Journal)
Glick, B.R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J. and McConkey, B. 2007. Promotion of plant growth by bacterial ACC deaminase. Critical reviews in plant sciences26(5-6): 227-242. DIO: 10.1016/j.joule.2018.11.008. (Journal)
Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1): 30-39. DOI: 10.1016/j.micres.2013.09.009. (Journal)
Halbleib, C.M. and Ludden, P.W. 2000. Regulation of biological nitrogen fixation. The Journal of nutrition, 130(5), pp.1081-1084. DOI: 10.1093/jn/130.5.1081. (Journal)
Haj Hashemi, R., Ebrahimi, A., Ghasare, A. 2017. Investigating the effect of growth-promoting bacteria on the germination components of Astragalus cyclophyllon seeds under drought stress conditions. The second national conference of knowledge and technology of agricultural sciences, natural resources and environment of Iran. (In Persian) (Conference)
Islam, S., Akanda, A.M., Prova, A., Islam, M.T. and Hossain, M.M., 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in microbiology, 6: 1360. doi: 10.3389/fmicb.2015.01360. (Journal)
Israr, D., Mustafa, G., Khan, K.S., Shahzad, M., Ahmad, N. and Masood, S. 2016. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiology and Biochemistry108: 304-312. DOI: 10.1016/j.plaphy.2016.07.023. (Journal)
 
Khalifa, A.Y. and Almalki, M.A. 2015. Isolation and characterization of an endophytic bacterium, Bacillus megaterium BMN1, associated with root-nodules of Medicago sativa L. growing in Al-Ahsaa region, Saudi Arabia. Annals of Microbiology, 65: 1017-1026. DOI 10.1007/s13213-014-0946-4. (Journal)
Li, H.B., Singh, R.K., Singh, P., Song, Q.Q., Xing, Y.X., Yang, L.T. and Li, Y.R. 2017. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Frontiers in Microbiology8: 1268. DOI: 10.3389/fmicb.2017.01268 . (Journal)
Xiao Xia, L., Qu Lu, Q.L., Dong YongZhe, D.Y., Han LiFeng, H.L., Liu ErWei, L.E., Fang ShiMing, F.S., Zhang Yi, Z.Y. and Wang Tao, W.T. 2014. A review of recent research progress on the Astragalus genus. Molecules, 19(11): 18850-18880. DOI:10.3390/molecules191118850. (Journal)
Maassoumi, A.A. 2005. The genus Astragalus in Iran Vol. 5. Perennials. Research Institute of Forests & Rangelands, 804 pp.,(In Persian).(Book)
Mencherini, T., Picerno, P., Scesa, C. and Aquino, R. 2007. Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. Journal of natural products, 70(12): 1889-1894. DOI: 10.1021/np070351s. (Journal)
Meyer, J.M. 2000. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of microbiology, 174: 135-142. DOI: 10.1007/s002030000188. (Journal)
Miladiarsi, N.R.M. and Widyastuti, R. 2017. Selection, characterization and application of rhizobacteria and its effect on chili (Capsicum annuum L.) plant growth. Research Journal of Microbiology, 12: 161-169. DOI: jm.2017.161.169. (Journal)
Molina, L., Segura, A., Duque, E. and Ramos, J.L. 2020. The versatility of Pseudomonas putida in the rhizosphere environment. In Advances in applied microbiology (Vol. 110: 149-180). Academic Press. DOI: 10.1016/bs.aambs.2019.12.002. (Journal)
Murunde, R. and Wainwright, H. 2018. Bio-priming to improve the seed germination, emergence and seedling growth of kale, carrot and onions. Global Journal of Agricultural Research, 6(3): 26-34. www.eajournals.org (Journal)
Nascimento, F.X., Brígido, C., Glick, B.R., Oliveira, S. and Alho, L. 2012. Mesorhizobium ciceri LMS‐1 expressing an exogenous 1‐aminocyclopropane‐1‐carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Letters in applied microbiology55(1), pp.15-21. doi:10.1111/j.1472-765X.2012.03251.x. (Journal)
Noreen, R.U.B.I.N.A., Ali, S.A., Hasan, K.A., Habiba, F.U., Tariq, A., Ara, J. and Ehteshamul-Haque, S. 2019. Role of fluorescent Pseudomonas associated with root nodules of mungbean in the induction of nodulation by the rhizobia in mungbean. Pak. J. Bot, 51(3): 1161-1168. DOI: 10.30848/PJB2019-3(44). (Journal)
Oldroyd, G.E., Murray, J.D., Poole, P.S. and Downie, J.A. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annual review of genetics, 45(1): 119-144. DOI: 10.1146/annurev-genet-110410-132549. (Journal)
Ortega-Torres, A.E., Rico-García, E., Guzmán-Cruz, R., Torres-Pacheco, I., Tovar-Pérez, E.G. and Guevara-González, R.G. 2021. Addition of phosphatases and phytases to mature compost to increase available phosphorus: a short study. Agronomy, 11(12): 2555. DOI: 10.3390/agronomy11122555. (Journal)
Osuna, D., Prieto, P. and Aguilar, M. 2015. Control of seed germination and plant development by carbon and nitrogen availability. Frontiers in Plant Science6: 1023. DOI: 10.3389/fpls.2015.01023. (Journal)
Pastor-Bueis, R., Jiménez-Gómez, A., Barquero, M., Mateos, P.F. and González-Andrés, F. 2021. Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonised spaces inside the nodule. European Journal of Agronomy122: 126187. DOI: 10.1016/j.eja.2020.126187. (Journal)
Penrose, D.M. and Glick, B.R. 2001. Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Canadian Journal of Microbiology47(4): 368-372. DOI: 10.1139/w01-014. (Journal)
Pourhadi, M. 2011. Effect of biofertilizers on the yield and essential oil of peppermint (Mentha piperita L.). Jornal of Medicinal Herbs: 1: 137-148. (In Persian)(Journal)
Rodrı́guez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, 17(4-5): pp.319-339. DOI: 10.1016/S0734-9750(99)00014-2. (Journal)
Sasirekha, B., Bedashree, T. and Champa, K.L. 2012. Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. Eur J Exp Biol2(1), pp.95-104. www.pelagiaresearchlibrary.com. (Journal)
Salehi Eskandari, B., S. M. Ghaderian, R. Ghasemi, and H. Schat. 2017. Optimization of seed germination in an Iranian serpentine endemic, Fortuynia garcinii. Flora. 231:38-42. DOI: 10.1016/j.flora.2017.04.005. (Journal)
Saleem, M., Arshad, M., Hussain, S. and Bhatti, A.S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of industrial Microbiology and Biotechnology, 34(10): 635-648. DOI 10.1007/s10295-007-0240-6. (Journal)
Sakshi, I., Saroj, S., Devendra Kumar, C., Hemant Kumar, G. and RK, G. 2011. Molecular characterization of Pseudomonas spp. isolated from root nodules of various leguminous plants of Shekhawati Region, Rajasthan, India. American Journal of Plant Sciences, 2012. DOI:10.4236/ajps.2012.31005. (Journal)
Sánchez, A.C., Gutiérrez, R.T., Santana, R.C., Urrutia, A.R., Fauvart, M., Michiels, J. and Vanderleyden, J. 2014. Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. European Journal of Soil Biology62: 105-112. DOI: 10.1016/j.ejsobi.2014.03.004. (Journal)
Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews31(4): 425-448. DOI:10.1111/j.1574-6976.2007.00072.x. (Journal)
Tavili, A., Abbasi Khalaki, M., Moameri, M. 2012. Effect of different methods of breaking dormancy on seed germination and some trait of Astragalus tribuloides. Journal of Seed Science and Technology, 1(1): 64-72. DOI: 10.22092/ijsst.2020.128801.1316. (In Persian)(Journal)
Tilak, K.V.B.R., Ranganayaki, N. and Manoharachari, C. 2006. Synergistic effects of plant‐growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science57(1): 67-71. DOI: 10.1111/j.1365-2389.2006.00771.x. (Journal)
Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological research, 184: 13-24. DOI: 10.1016/j.micres.2015.12.003. (Journal)
Wang, C., Knill, E. Glick, B. R., and Defago, G. 2000. Effect of transferring ´ 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-
promoting and disease-suppressive capacities. Can. J. Microbiol. 46: 898–907. DOI: 10.1139/w00-071. (Journal)
White, P.J. and Brown, P. 2010. Plant nutrition for sustainable development and global health. Annals of botany, 105: 1073-1080. DOI: 10.1093/aob/mcq085. (Journal)
Wdowiak-Wróbel, S. and Małek, W. 2016. Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion. Archives of Microbiology198: 793-801. DOI 10.1007/s00203-016-1243-3. (Journal)
Yang, A. and Yen, C. 2012. PCR optimization of BOX-A1R PCR for microbial source tracking of Escherichia coli in waterways. J Exp Microbiol Immunol, 16: 85-89. (Journal)
Zaidi, A., Khan, M.S., Rizvi, A., Saif, S., Ahmad, B. and Shahid, M. 2017. Role of phosphate-solubilizing bacteria in legume improvement (175-197). Springer International Publishing. DOI: 10.1007/978-3-319-59174-2_8. (Journal)
Zhao, Y., 2010. Auxin biosynthesis and its role in plant development. Annual review of plant biology, 61(1): 49-64. DOI: 10.1146/annurev-arplant-042809-112308. (Journal)
Zare Kia, S., Jafari, A.A., Zandi Esfahan, E., Fallah Hosseini, L. 2013. Study on germination of some perennial herbaceous Astragalus. Iranian J. Range Desert Res. 20: 88-1. DOI: 10.22092/ijrdr.2013.2985. (Journal)
Zhang, T., Liu, M., Huang, X., Hu, W., Qiao, N., Song, H., Zhang, B., Zhang, R., Yang, Z., Liu, Y. and Miao, Y. 2020. Direct effects of nitrogen addition on seed germination of eight semi‐arid grassland species. Ecology and Evolution, 10(16): 8793-8800. DOI: 10.1002/ece3.6576. (Journal)
Zhiyong, S., Yaxuan, G., Yuanyuan, W., Xiang, Y., Xu, G., Zhenhong, L., Jingping, N., Jianping, L. and Zhenyu, L. 2024. Nitrogen-fixing bacteria promote growth and bioactive components accumulation of Astragalus mongholicus by regulating plant metabolism and rhizosphere microbiota. BMC microbiology, 24(1): 261. DOI: 10.1186/s12866-024-03409-y. (Journal)