Influence of Seed Priming with Magnesium Nanoparticles on Enhancing Performance Indicators and Oil Content of Camelina (Camelina sativa) Under Salinity Stress

Document Type : Research Paper

Authors

1 1. Researcher, Agricultural and Natural Resources Research and Education Center of Ilam Province, Agricultural Research, Education, and Extension Organization (AREEO), Ilam, Iran

2 2. Associate Professor, Agricultural and Natural Resources Research and Education Center of Ilam Province, Agricultural Research, Education, and Extension Organization (AREEO), Ilam, Iran

3 Assistant Professor, Agricultural and Natural Resources Research and Education Center of Ilam Province, Agricultural Research, Education, and Extension Organization (AREEO), Ilam, Iran

4 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, East Azarbaijan, Iran

10.22124/jms.2024.8797

Abstract

Salinity stress is a major agricultural challenge, leading to reduced growth and productivity in crop plants. While seed priming with nanoparticles has emerged as a novel approach to mitigate environmental stress effects, limited information is available regarding the impact of magnesium nanoparticles on camelina (Camelina sativa) under salinity stress. This study aimed to investigate the influence of seed priming with magnesium nanoparticles on growth, biochemical traits, and seed quality of camelina under salinity stress. The experiment was conducted as a factorial in a completely randomized design with three salinity levels (0, 100, and 200 mM NaCl) and four concentrations of magnesium nanoparticles (0, 100, 300, and 600 mg/L). Results showed that salinity stress reduced the potassium-to-sodium ratio, thousand-seed weight, seed yield, oil content, and caused unfavorable changes in fatty acid composition. In contrast, seed priming with magnesium nanoparticles, particularly at a concentration of 300 mg/L, improved the potassium-to-sodium ratio, enhanced antioxidant enzyme activities, increased phenolic and flavonoid contents, and decreased lipid peroxidation. This treatment also boosted seed yield and oil content by 168% and 43%, respectively, and improved oil quality by increasing unsaturated fatty acids and reducing palmitic acid content. Overall, the findings suggest that seed priming with magnesium nanoparticles, especially at 300 mg/L, can enhance the quantitative and qualitative traits of camelina seeds under salinity stress and serve as an effective strategy to mitigate salinity stress and improve crop productivity.

Keywords


Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R. M. A., Alkahtani, J., Dwiningsih, Y. and Elshikh, M.S. 2022. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in plant science13, p.932861. https://doi.org/10.3389/fpls.2022.932861 (Journal)
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3 (Book)
Ahmad, Z., Warraich, E.A., Iqbal, M. A., Barutcular, C., Alharby, H., Bamagoos, A., Cig, F. and El Sabagh, A. 2021. Foliage applied silicon ameliorates drought stress through physio-morphological traits, osmoprotectants and antioxidant metabolism of camelina (Camelina sativa L.) genotypes. Acta Scientiarum Polonorum Hortorum Cultus20(4), pp.43-57. https://doi.org/10.24326/asphc.2021.4.4 (Journal)
Alhammad, B.A., Ahmad, A., Seleiman, M. F. and Tola, E. 2023. Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymatic performance of Zea mays L. in salt-stressed soil. Plants12(4), p.690.  https://doi.org/10.3390/plants12040690 (Journal)
Ali, S., Ulhassan, Z., Shahbaz, H., Kaleem, Z., Yousaf, M. A., Ali, S., Sheteiwy, M. S., Waseem, M., Ali, S. and Zhou, W. 2024. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. Environmental Science: Nano11(8), pp.3250-3267. https://doi.org/10.1039/D4EN00417E (Journal)
Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N. and Al-Otaibi, A. 2019. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry139, pp.1-10. https://doi.org/10.1016/j.plaphy.2019.03.008 (Journal)
Alsamadany, H., Alharby, H. F., Ahmad, Z., Al-Zahrani, H. S., Alzahrani, Y.M. and Almaghamsi, A. 2024. Improving alkaline stress tolerance in maize through seed priming with silicon nanoparticles: a comprehensive investigation of growth, photosynthetic pigments, antioxidants, and ion balance. Silicon16(5), pp.2233-2244. https://doi.org/10.1007/s12633-023-02833-5 (Journal)
Amin, M. A. A., Abu-Elsaoud, A.M., Nowwar, A.I., Abdelwahab, A.T., Awad, M. A., Hassan, S. E. D., Boufahja, F., Fouda, A. and Elkelish, A. 2024. Green synthesis of magnesium oxide nanoparticles using endophytic fungal strain to improve the growth, metabolic activities, yield traits, and phenolic compounds content of Nigella sativa L. Green Processing and Synthesis, 13(1), p.20230215. https://doi.org/10.1515/gps-2023-0215 (Journal)
Amirfakhrian, Z., Abdossi, V., Mohammadi Torkashvand, A., Weisany, W. and Ghanbari Jahromi, M. 2024. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. Environmental Science and Pollution Research31(22), pp.31806-31817.  https://doi.org/10.1007/s11356-024-33329-3 (Journal)
Bahcesular, B., Yildirim, E. D., Karaçocuk, M., Kulak, M. and Karaman, S. 2020. Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Industrial Crops and Products146, p.112165. https://doi.org/10.1016/j.indcrop.2020.112165 (Journal)
Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060 (Journal)
Batool, S. U., Javed, B., Sohail, Zehra, S.S., Mashwani, Z. U. R., Raja, N. I., Khan, T., ALHaithloul, H. A. S., Alghanem, S. M., Al-Mushhin, A. A. and Hashem, M. 2021. Exogenous applications of bio-fabricated silver nanoparticles to improve biochemical, antioxidant, fatty acid and secondary metabolite contents of sunflower. Nanomaterials11(7), p.1750. https://doi.org/10.3390/nano11071750 (Journal)
Bazvand, F., Eisvand, H. R., Daneshvar, M., Rahimi-Moghaddam, S. and Paravar, A. 2024. Can exogenous application of putrescine and priming modulate salinity stress in Camelina sativa L. Industrial Crops and Products222, p.119711. https://doi.org/10.1016/j.indcrop.2024.119711 (Journal)
Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry44(1), pp.276-287. https://doi.org/10.1016/0003-2697(71)90370-8 (Journal)
Chance, B. and Maehly, A. C. 1955. Assay of catalases and peroxidases. (Book)
Chang, C. C., Yang, M. H., Wen, H. M. and Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis10(3). https://doi.org/10.38212/2224-6614.2748 (Journal)
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 (Journal)
El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M. A., Islam, M. S., Fahad, S., Sytar, O., Çig, F., Meena, R. S. and Erman, M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. Environment, climate, plant and vegetation growth, pp.503-533. https://doi.org/10.1007/978-3-030-49732-3_20 (Journal)
El-Badri, A. M., Batool, M., Wang, C., Hashem, A. M., Tabl, K. M., Nishawy, E., Kuai, J., Zhou, G. and Wang, B. 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety225, p.112695. https://doi.org/10.1016/j.ecoenv.2021.112695 (Journal)
Faiz, S., Yasin, N. A., Khan, W. U., Shah, A. A., Akram, W., Ahmad, A., Ali, A., Naveed, N. H. and Riaz, L. 2022. Role of magnesium oxide nanoparticles in the mitigation of lead-induced stress in Daucus carota: modulation in polyamines and antioxidant enzymes. International Journal of Phytoremediation24(4), pp.364-372. https://doi.org/10.1080/15226514.2021.1949263 (Journal)
Fatemeh, R., Hadi, A. and Latifeh, P. 2020. Effects of foliar application of ZnO nanoparticles on secondary metabolite and micro-elements of camelina (Camelina sativa L.) under salinity stress. Journal of Stress Physiology & Biochemistry16(4), pp.54-69. (Journal)
Fatemi, A., Moaveni, P., Daneshian, J., Mozafari, H. and Ghaffari, M. 2022. Magnesium nanoparticles improve grain yield, oil percentage, physiological, and biochemical traits of sunflower (Helianthus annuus L.) under drought stress. Journal of Agricultural Science and Technology24(3), pp.665-678. http://jast.modares.ac.ir/article-23-44376-en.html (Journal)
Forozan Bakyani, M. R., Alinia, M., Abdolreza Kazemeini, S., Abadia Bayona, J. and Dadkhodaie, A. 2022. Foliar application of melatonin improves the salt tolerance, ion and redox homeostasis and seed oil fatty acid profile in Camelina sativa. https://doi.org/10.3390/plants11223113 (Journal)
Gautam, A., Sharma, P., Ashokhan, S., Yaacob, J. S., Kumar, V. and Guleria, P. 2023. Inhibitory impact of MgO nanoparticles on oxidative stress and other physiological attributes of spinach plant grown under field condition. Physiology and Molecular Biology of Plants29(12), pp.1897-1913. https://doi.org/10.1007/s12298-023-01391-9 (Journal)
Ghasempour, S., Ghanbari Jahromi, M., Mousavi, A. and Iranbakhsh, A. 2024. Seed priming with cold plasma, iron, and manganese nanoparticles modulates salinity stress in hemp (Cannabis sativa L.) by improving germination, growth, and biochemical attributes. Environmental Science and Pollution Research, pp.1-13. https://doi.org/10.1007/s11356-024-35590-y (Journal)
Ghassemi-Golezani, K. and Farhangi-Abriz, S. 2018. Changes in oil accumulation and fatty acid composition of soybean seeds under salt stress in response to salicylic acid and jasmonic acid. Russian Journal of Plant Physiology65, pp.229-236. https://doi.org/10.1134/S1021443718020115 (Journal)
Ghassemi-Golezani, K. and Farhangi-Abriz, S. 2021. Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress. Rhizosphere19, p.100416. https://doi.org/10.1016/j.rhisph.2021.100416 (Journal)
Gogna, M., Choudhary, A., Mishra, G., Kapoor, R. and Bhatla, S.C. 2020. Changes in lipid composition in response to salt stress and its possible interaction with intracellular Na+-K+ ratio in sunflower (Helianthus annuus L.). Environmental and Experimental Botany178, p.104147. https://doi.org/10.1016/j.envexpbot.2020.104147 (Journal)
Haghaninia, M., Javanmard, A., Kahrizi, D., Bahadori, M. B. and Machiani, M.A. 2024a. Optimizing oil quantity and quality of camelina (Camelina sativa L.) with integrative application of chemical, nano and bio-fertilizers under supplementary irrigation and rainfed condition. Plant Stress11, p.100374. https://doi.org/10.1016/j.stress.2024.100374 (Journal)
Haghaninia, M., Javanmard, A., Mahdavinia, G. R., Shah, A. A. and Farooq, M. 2023. Co-application of biofertilizer and stress-modulating nanoparticles modulates the physiological, biochemical, and yield responses of camelina (Camelina sativa L.) under limited water supply. Journal of Soil Science and Plant Nutrition23(4), pp.6681-6695. https://doi.org/10.1007/s42729-023-0152 (Journal)
Haghaninia, M., Rasouli, F., Javanmard, A., Mahdavinia, G., Azizi, S., Nicoletti, R., Murariu, O. C., Tallarita, A. V. and Caruso, G. 2024b. Improvement of physiological features and essential oil content of thymus vulgaris after soil amendment with chitosan nanoparticles under chromium toxicity. Horticulturae10(6), p.659.  https://doi.org/10.3390/horticulturae10060659 (Journal)
Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1 (Journal)
Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., Hafeez, M. B., Balooch, S., Zahra, N., Ren, X. and Rafiq, M. 2021. Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants10(4), p.749. https://doi.org/10.3390/plants10040749 (Journal)
Kabiri, R., Shamsaddin-Saied, M. and Hasanzadeh-Tajarogh, B. 2024. Assessment of germination indices and early growth of Camelina (Camelina sativa) seedlings in response to osmotic and salinity stresses. Iranian J. Seed Res. 11(1), 21-41. https://doi.10.61186/yujs.11.1.21 (In Persian) (Journal)
Kanjana, D. 2020. Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. Journal of Plant Nutrition43(20), pp.3035-3049. https://doi.org/10.1080/01904167.2020.1799001 (Journal)
Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M.J., Alyemeni, M. N., Brestic, M. and Zhang, X. 2020. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant physiology and biochemistry156, pp.221-232. https://doi.org/10.1016/j.plaphy.2020.09.018 (Journal)
Khoraki, M. and Farhoudi, R. 2020. Effect of halopriming on germination and seedling growth of single cross 704 corn seeds under salinity stress condition, Iranian Journal of Seed Sciences and Research, 7(4), pp. 447-461.  https://doi.org/10.22124/jms.2020.4642 (In Persian) (Journal)
Kokebie, D., Enyew, A., Masresha, G., Fentie, T. and Mulat, E., 2024. Morphological, physiological, and biochemical responses of three different soybean (Glycine max L.) varieties under salinity stress conditions. Frontiers in Plant Science15, p.1440445. https://doi.org/10.3389/fpls.2024.1440445 (Journal)
Mahdy, A. M., Sherif, F. K., Elkhatib, E. A., Fathi, N. O. and Ahmed, M. H. 2020. Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition43(12), pp.1862-1874. https://doi.org/10.1080/01904167.2020.1750647 (Journal)
Matthees, H. L., Thom, M. D., Gesch, R. W. and Forcella, F. 2018. Salinity tolerance of germinating alternative oilseeds. Industrial Crops and Products, 113, pp.358-367. https://doi.org/10.1016/j.indcrop.2018.01.042 (Journal)
Mazhar, M. W., Ishtiaq, M., Maqbool, M. and Akram, R. 2022. Seed priming with Calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress. South African Journal of Botany151, pp.889-899. https://doi.org/10.1016/j.sajb.2022.11.017 (Journal)
Mirrani, H. M., Noreen, Z., Usman, S., Shah, A. A., Mahmoud, E. A., Elansary, H. O., Aslam, M., Waqas, A. and Javed, T. 2024. Magnesium nanoparticles extirpate salt stress in carrots (Daucus carota L.) through metabolomics regulations. Plant Physiology and Biochemistry207, p.108383. https://doi.org/10.1016/j.plaphy.2024.108383 (Journal)
Mohamed, I. A., Shalby, N., El-Badri, A., Saleem, M. H., Khan, M. N., A. Nawaz, M., Qin, M., Agami, R. A., Kuai, J., Wang, B. and Zhou, G. 2020. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy10(8), p.1186. https://doi.org/10.3390/agronomy10081186 (Journal)
Moradbeygi, H., Jamei, R., Heidari, R. and Darvishzadeh, R., 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae272, p.109537. https://doi.org/10.1016/j.scienta.2020.109537 (Journal)
Mukherjee, S. P. and Choudhuri, M. A. 1983. Implications of water stress-induced changes in the levels of endogenous plant hormones and leaf growth in soybeans. Physiologia Plantarum, 58(2), 307-313. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x (Journal)
Naheed, R., Aslam, H., Kanwal, H., Farhat, F., Gamar, M. I. A., Al-Mushhin, A. A., Jabborova, D., Ansari, M. J., Shaheen, S., Aqeel, M. and Noman, A. 2021. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi Journal of Biological Sciences28(10), pp.5469-5479. https://doi.org/10.1016/j.sjbs.2021.08.021 (Journal)
Saadat, H. and Sedghi, M. 2024. The effect of priming on seed germination indices and antioxidant enzyme activity in chickpea seedlings (Cicer arietinum L.) under salinity stress. Iranian Journal of Seed Sciences and Research, 11(1), pp. 15-29.  https://doi.org/10.22124/jms.2024.8036 (In Persian) (Journal)
Sadak, M. S., Abd El-Hameid, A. R., Zaki, F. S., Dawood, M. G. and El-Awadi, M.E. 2020. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre44, pp.1-10.  https://doi.org/10.1186/s42269-019-0259-7 (Journal)
Sanehkoori, F. H., Pirdashti, H. and Bakhshandeh, E. 2021. Quantifying water stress and temperature effects on camelina (Camelina sativa L.) seed germination. Environmental and Experimental Botany186, p.104450.  https://doi.org/10.1016/j.envexpbot.2021.104450 (Journal)
Sen, A., Islam, M. M., Zaman, E., Ghosh, U. K., Momtaz, M. B., Islam, M. A., Urmi, T. A., Mamun, M. A. A., Rahman, M. M., Kamal, M.Z.U. and Rahman, G.M. 2022. Agro-Morphological, yield and biochemical responses of selected wheat (Triticum aestivum L.) genotypes to salt stress. Agronomy12(12), p.3027.  https://doi.org/10.3390/agronomy12123027 (Journal)
Singh, A., Rajput, V. D., Sharma, R., Ghazaryan, K. and Minkina, T. 2023. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, p.116585. https://doi.org/10.1016/j.envres.2023.116585 (Journal)
Singleton, V. L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture16(3), pp.144-158. https://doi.org:10.5344/ajev.1965.16.3.144 (Journal)
Stasnik, P., Vollmann, J., Großkinsky, D. K. and Jonak, C. 2024. Leaf carbohydrate metabolic enzyme activities are associated with salt tolerance and yield stability in the climate-resilient crop Camelina sativaPlant Stress14, p.100629. https://doi.org/10.1016/j.stress.2024.100629 (Journal)
Subramanyam, K., Du Laing, G. and Van Damme, E. J. 2019. Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Frontiers in plant science10, p.116. https://doi.org/10.3389/fpls.2019.00116 (Journal)
Teimoori, N., Ghobadi, M. and Kahrizi, D. 2023. Improving the growth characteristics and grain production of camelina (Camelina sativa L.) under salinity stress by silicon foliar application. Agrotechniques in Industrial Crops3(1), pp.1-13. https://doi.org/10.22126/atic.2023.8681.1081 (Journal)
Waraich, E. A., Ahmad, M., Soufan, W., Manzoor, M. T., Ahmad, Z., Habib-Ur-Rahman, M. and Sabagh, A.E. 2021. Seed priming with sulfhydral thiourea enhances the performance of Camelina sativa L. under heat stress conditions. Agronomy11(9), p.1875. https://doi.org/10.3390/agronomy11091875 (Journal)
Zafar, S., Hasnain, Z., Danish, S., Battaglia, M. L., Fahad, S., Ansari, M. J. and Alharbi, S. A. 2024. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biology24(1), p.35. https://doi.org/10.1186/s12870-024-04720-6 (Journal)