The effect of priming on seed germination indices and antioxidant enzyme activity in chickpea seedlings (Cicer arietinum L.) under salinity stress

Document Type : Research Paper

Authors

1 Ph.D of Crop Ecology, Department of Production Engineering and Plant Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor of Crop Physiology, Department of Production Engineering and Plant Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

10.22124/jms.2024.8036

Abstract

In order to investigate the effect of priming on seed germination indices and antioxidant enzyme activity in chickpea seedlings under salinity stress and an experiment was conducted based on completely randomized design arranged in factorial with three replications at University of Mohaghegh Ardabili in 2023 with 3 replications. Treatments were four salinity levels (0, 50, 75 and 100 mM Derived from sodium chloride) and four levels of priming (without priming (control), hydropriming, priming with gibberellin (50 ppm) and salicylic acid (100 ppm)). The results showed that salinity stress reduced germination percentage (GP), daily germination coefficient (DGC), plumlue fresh weight (PFW). But seed priming with distilled water, salicylic acid, especially gibberellin improved these traits. Salinity increased the mean germination time (MGT), so that the highest (0.0387 seed per day) was observed at salinity of 100 Mm. The highest radicle fresh weight (RFW) (110.967 mg), radicle dry weight (RDW) (19.600 mg), plumule dry weight (PDW) (14.667 mg), seed length and weight vigor index (SLVI and SWVI) (12.041and 3.288) were observed in priming with gibberellin and control. The activity of catalase and glutathione enzymes reductase in priming with gibberellin were the application 66 and 42% higher than the control. The activity of peroxidase (enzyme in gibberellin treatment and salinity of 100 mM compared to the control showed an increase about 96%. Also. lowest amylase (2.1384 mg g-1 FW min-1) was obtained in salinity of 100 mM. In general, the results showed that gibberellin by stimulating antioxidant enzymes and neutralizing free radicals can reduce the harmful effects of salinity stress on some traits in chickpea seedlings and improve seedling growth

Keywords


Abdul-Baki, A. A. and Anderson, J. D. 1973. Vigor determination in soybean by multiple criteria. Journal of Crop Science, 13: 630-633. DOI :10.2135/cropsci1973.0011183X001300060013x. (Journal)
Abdel Latef, A. H. 2011. Influence of arbuscularmycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 21(6): 495-503. DOI: 10.1007/s00572-010-0360-0. Epub 2011 Jan 8. (Journal)
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126.
DOI: 10.1016/S0076-6879(84)05016-3. (Journal)
Anwar, M. P., Khalid, M. A. I., Islam, A. M., Yeasmin, S., Sharif, A., Hadifa, A., Ismail, I. A., Hossain, A. and El Sabagh, A. 2021. Potentiality of different seed priming agents to mitigate cold stress of winter rice seedling. Phyton, 90(5): 1491. DOI: 10.32604/phyton.2021.015822. (Journal)
Azadbakht, M. and Balouchi, H. 2020. The effect of melatonin and hydropriming on some physiological characteristics of Chickpea (Cicer arietinum L.) seed and seedling under salinity stress. Plant Process and Function, 9(35): 347-358.  DOI: 20.1001.1.23222727.1399.9.35.25.6. (In Persian)(Journal)
Azarnia, M. and Eisvand, H. 2014. Effects of Hydro and Hormonal Priming on Yield and Yield Components of Chickpea (Cicer arietinum L.) in irrigated and rain-fed conditions. Crop production journal, 6(4): 1-18. DOI: 20.1001.1.2008739.1392.6.4.1.3. (In Persian)(Journal)
Azarnia, M., Biabani, A., Eisvand, H. R, Gholamalipour Alamdari, E. and Safikhani, S. 2016. Effect of Seed Priming with Gibberellic Acid and Salicylic Acid on Germination Characteristic and Seed and Seedlings Physiological Quality of Lentil (Lens culinaris), Iranian Journal of Seed Research, 3(1): 59-73. DOI: 20.1001.1.23831251.1395.3.1.5.4. (In Persian)(Journal)
Bakhtavar, M. A., Afzal, I., Basra, S. M. A., Noor, M. A. 2015. Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE, 10: e0124441. DOI: 10.1371/journal.pone.0124441. (Journal)
Bin-Jumah, M., Abdel-Fattah, A. F. M., Saied, E. M., El-Seedi, H. R. and Abdel-Daim, M. M. 2021. Acrylamide-Induced Peripheral Neuropathy: Manifestations, Mechanisms, and Potential Treatment Modalities. Environmental Science and Pollution Research, 28: 13031-13046.
     DOI: 10.1007/s11356-020-12287-6. (Journal)
Bittencourt, M. L. C., Dias, D. C., Dias, L. A. and Araújo, E. F. 2005. Germination and vigour of primed Asparagus seeds. Scientia Agricola, 62(4):319-324.
     DOI: 10.1590/S0103-90162005000400003. (Journal)
Brancalion, P. H. S., Novembre, D. L. C., ARodrigues, R. R. and Tay, D. 2008. Priming of Mimosa
bimucronata
seeds: A tropical tree species from Brazil. Acta Horticulturae, 82: 163-168.
     DOI: 10.17660/ActaHortic.2008.782.18. (Journal)
Chung, W. H. 2017. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. Journal of Microbiology, 55: 409-416.
     DOI: 10.1007/s12275-017-6647-5. (Journal)
Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N. and Trethowan, R. M. 2012. High temperature tolerance in chickpea and its implications for plant improvement. Crop & Pasture
Science. 63(5): 419–428. Doi:10.1071/CP11218. (Journal)
Ding, F., Wang, R. and Chen, B. 2019. Effect of exogenous ammonium gluconate on growth, ion flux and antioxidant enzymes of maize (Zea Mays L.) seedlings under NaCl stress. Plant Biology, 21(4): 643–651. DOI: 10.1111/plb.12963. (Journal)
Duman, I. 2006. Effect of seed priming with PEG and K3PO4 on germination and seedling growth in lettuce. Pakistan Journal of Biological Sciences, 9: 923-928. Doi: 10.3923/pjbs.2006.923.928. (Journal)
Esterbauer, H. and Grill, D. 1978. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiology, 61:119–121. DOI: 10.1104/pp.61.1.119. (Journal)
Farhoudi, R. and Khodarahmpour, Z. 2017. Study of germination, seedling growth and antioxidant enzymes activity of chickpea cultivars under salt stress. Plant Process and Function, 6(21): 91-102.
     DOI: 20.1001.1.23222727.1396.6.21.18.0. (In Persian)(Journal)
Farooq, M., Basra, S. M. A. and Hafeez, K. 2006. Seed invigoration by osmohardening in coarse and fine rice. Seed Science and Technology, 34: 181–187. DOI: 10.15258/sst.2006.34.1.19. (Journal)
Fathi Amirkhiz, K., Omidi, H., Heshmati, S. and Jafarzadeh, L. 2012. Study of black cumin (Nigella sativa L.) germination attributes and seed vigur under salinity stress by osmopriming accelerators pretreatment. Iranian Journal of Field Crops Research, 10(2): 299-310. DOI: 10.22067/GSC.V10I2.16170.
(In Persian)(Journal)
Feghhenabi, F., Hadi, H. and Khodaverdiloo, H., Van Genuchten, M. T. 2020. Seed priming alleviated
salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231:106022. DOI: 10.1016/j.agwat.2020.106022. (Journal)
Foti, R., Abureni, K., Tigere, A., Gotosa, J. and Gere, J. 2008. The efficacy of different seed priming
osmotica on the establishment of maize (Zea mays L.) caryopses. Journal of Arid Environments, 72: 1127-1130. DOI: 10.1016/j.jaridenv.2007.11.008. (Journal)
Haghjoo, M. and Bahrani, A. 2018. Effect of salicylic acid and gibberellic acid pre-treatment on accumulation of some ions and germination indices in canola (Brassica napus L.) under salt stress condition. Scientific Journals Database, 8(1): 23-35. (In Persian)(Journal)
Hardegree, S. P. and Emmerich, W. E. 1990. Partitioning Water Potential and Specific Salt Effect on Seed Germination of Four Grasses. Annuals of Botany, 65: 587-595.
      DOI: 10.1093/oxfordjournals.aob.a088068. (Journal)
Hasanuzzaman, M., Nahar, N., Hossain, M. S., Mahmud, J. A., Rahman, A., Inafuku, M., Oku, H. and Fujita, M. 2017. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Sciences, 18: 200.
     DOI: 10.3390/ijms18010200. (Journal)
Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M. and Fotopoulos, V. 2020. Reactive oxygen species and antioxidant defense in
plants under abiotic stress: revisiting the crucial role of a universal defense regulator.
Antioxidants, 9(8): 681. DOI: 10.3390/antiox9080681. (Journal)
Hasanuzzaman, M., Inafuku, M., Nahar, K., Fujita, M. and Oku, H. 2021. Nitric oxide regulates plant growth, physiology, antioxidant defense, and ion homeostasis to confer salt tolerance in the mangrove species, Kandelia obovata. Antioxidants, 10: 611. DOI: 10.3390/antiox10040611. (Journal)
Hawrylak, N. B., Rubinowska, K., Molas, J. and Woch, W., Matraszek-Gawron, R. and Szczurowska, A. 2019. Selenium-induced improvements in the ornamental value and salt stress resistance of Plectranthus scutellarioides (L.) R. Br. Folia Horticultureae, 31: 213-221.
     DOI: 10.2478/fhort-2019-0016. (Journal)
Hemeda, H. M. and Klein, B. P. 1990. Effects of naturally occurring antioxidants on peroxidase
activity of vegetable extracts. Journal of Food Science, 55: 184–185.
     DOI: 10.1111/j.1365-2621.1990.tb06048.x. (Journal)
Hussain, S., Khan, F., Hussain, H. A. and Nie, L. 2016. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance of rice cultivars. Front. Plant Science, 7: 116.
     DOI: 10.3389/fpls.2016.00116. (Journal)
Iqbal. S., Hussain, S., Qayyaum, M. A. and Ashraf, M. 2020. The Response of Maize Physiology under Salinity Stress and Its Coping Strategies. Plant Stress Physiology. Bangladesh Wheat and Maize Research Institute Press. (Book)
Iqbal, H., Yaning, C., Rehman, H., Waqas, M., Ahmed, Z., Raza, S. T. and Shareef, M. 2020. Improving heat stress tolerance in late planted spring maize by using different exogenous elicitors. Chilean Journal of Agricultural Research, 80: 30-40. DOI: 10.4067/S0718-58392020000100030. (Journal)
 
Islam, S. M. M., Rohani, M. F. and Shahjahan, M. 2021. Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquaculture Reports, 21: 100800. DOI: 10.1016/j.aqrep.2021.100800. (Journal)
ISTA. 2012. International Rules for Seed Testing. Bassersdorf, Switzerland: The
International Seed Testing Association (ISTA). (Handbook)
Jahan, M. S., Li, G., Xie, D., Farag, R., Hasan, M. M. and Alabdallah, N. M.  2023. Melatonin mitigates salt-induced growth inhibition through the regulation of carbohydrate and nitrogen metabolism in tomato seedlings. Journal of Soil Science and Plant Nutrition, 23: 4290–4308.
     DOI: 10.1007/s42729-023-01348-7. (Journal)
Jukanti, A. K., Gaur, P. M., Gowda, C. L. L. and Chibbar, R N. 2012. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 1: S11-26.
     DOI: 10.1017/S0007114512000797. (Journal)
Kaur, S., Suhalia, A., Sarlach, R. S., Mohd, S., Pritpal, S., Gomti, G., Anureet, B. and Achla, S. 2022.
Uncovering the Iranian wheat landraces for salinity stress tolerance at early stages of plant growth.
Cereal Res. Commun, 56: 6-13. DOI: 10.1007/s42976-022-00245-6. (Journal)
Khan, M. N., Siddiqui, M. H., Mohammad, F., Naeem, M. and Khan, M. M. A. 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 32: 121–132.
     DOI: 10.1007/s11738-009-0387-z. (Journal)
Khedia, J., Agarwal, P. and P. K. 2019. Agarwal. Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. Biotech. 9(11): 395. DOI: 10.1007/s13205-019-1924-0. (Journal)
Kumar, R., Singh, S. K. and Sah, U. 2017. Multidimensional study of pulse production in Bundelkhand region of India. Legume Research. 40(5): 1046-52. DOI: 10.18805/LR-3502. (Journal)
Li, Z., Xu, J., Gao, Y., Wang, C., Guo, G., Luo, Y., Huang, Y., Hu, W., Sheteiwy, M. S. and Guan, Y. 2017. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination. Frontiers in Plant Science, 8: 1153.
     DOI: 10.3389/fpls.2017.01153. (Journal)
Mansoor, S., Wani, O. A., Lone, J. F., Manhas, S., Kour, N., Alam, P., Ahmad, A. and Ahmad, P. 2022. Reactive Oxygen Species in Plants. Antioxidants, 11: 225. DOI: 10.3390/antiox11020225. (Journal)
Muhei, S. H. 2018. Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. Advances in Crop Science and Technology, 6: 403-409.
DOI: 10.4172/2329-8863.1000403. (Journal)
Top of Form
Nazari, R., Parsa, S., Tavakkol Afshari, R. and Mahmoodi, S. 2020. The effect of seed priming with Salicylic acid on the activity of antioxidant enzymes and lipid peroxidation in deteriorated seeds soybean (Glycine max (L.) Merrill, William variety). Iranian Journal of Seed Science and Technology, 9(1): 57-70. DOI: 10.22034/IJSST.2018.116566.1149. (In Persian)(Journal)
Noreen, S., Saleem, S., Iqbal, U., Mahmood, S., Salim, M., Akbar, N., El-Sheikh, M. and Kaushik, P. 2024. Moringa olifera leaf extract increases physio-biochemical properties, growth and yield of Pisum sativum grown under salinity stress, Journal of King Saud University-Science, 36(2): 103056.
DOI: 10.1016/j.jksus.2023.103056. (Journal)
Omidi, H., Sorushzadeh, A., Salehi, A. and Ghezeli, F. 2005. Evaluation of priming pretreatments on germination rapeseed. Agricultural Science and Technology, 19(2): 125-136. (In Persian)(Journal)
Omidi, H., Leyla, J. and Hasanali, N. 2014. Seeds of medicinal plants and crops. Natural Resources and Environment. Shahed University Press. (Book)
Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y. and Hasanuzzaman, M. 2021. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10: 37. DOI: 10.3390/plants10010037. (Journal)
Saadat, H., and Sedghi, M. 2021. Effect of priming and aging on Physiological, biochemical traits seed common bean (Phaseolus vulgaris L.). Journal of Seed Research, 11(3): 75-89.
DOI: 10.30495/jsr.2022.1945870.1228. (In Persian)(Journal)
Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023a. The Effect of Priming with Different Levels of Chitosan on Physiological and Biochemical Traits in French Bean (Phaseolus vulgaris L.) Under Salinity Stress. Phant Production Technology, 14(2):75-89.
DOI: 10.22084/PPT.2023.26100.2075. (In Persian)(Journal)
 
Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023d. Expression of gibberellin synthesis
genes and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iranian Journal of Plant Physiology, 13(4): 4715-4728.
DOI: 10.30495/ijpp.2023.1978837.1460. (Journal)
Saadat, H., Soltani, E. and Sedghi, M. 2023b. The effect of seed priming with chitosan on germination
characteristics and activity of antioxidant enzymes in rice seedlings (Oryza Sativa L.) under salinity stress. Plant Process and Function, 12(54):239-258.
DOI: 20.1001.1.23222727.1402.12.54.15.5. (In Persian)(Journal)
Saadat, T, Alidoost, H., and Sedghi, M. 2022c. The effect of priming and aging on the germination of rice seed masses with different strength. Journal of Seed Research, 10(4): 60-67.
DOI: 20.1001.1.22520961.1399.10.37.7.5. (In Persian)(Journal)
Saadat, T, Alidoost, H., and Sedghi, M. 2022. The effect of priming on the activity and gene expression of antioxidant enzymes in rice. Journal of Seed Research, 11(4): 46-54.
DOI: 10.30495/jsr.2022.1928952.1210. (In Persian)(Journal)
Saadat, T., Sedghi, M., Gholipouri, A., Seyed Sharifi, R. and Sheykhbaglou, R. 2020a.The effect of priming deterioration on the activity of antioxidant enzymes and the mobility of seed reserves in Frenchbean (Phaseolus vulgaris L.) cv. Sadri. Iranian Journal of Science and Technology, 8(2): 19-32.
DOI: 10.22034/IJSST.2018.116851.1154. (In Persian)(Journal)
Saadat, T., Sedghi, M., Gholipouri, A., Seyed Sharifi, R. and Sheykhbaglou, R. 2020b. Effect of seed
      priming and aging on germination, biochemical traits and antioxidant enzyme gene expression in common bean(Phaseolus vulgaris l.). Iranian Journal of Seed Science and Research, 7(1): 1-13.
DOI: 10.22124/JMS.2020.4267. (In Persian)(Journal)
Saadat, T., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023c. Effect of chitosan on germination
indices of common bean (Phaseolus vulgaris) (cv. Sedri) seeds under salt stress. Iranian Journal of Seed Research, 9(2): 151-162. DOI: 10.61186/yujs.9.2.151. (In Persian)(Journal)
Saddiq, M. S., Iqbal, S., Afzal, I, Ibrahim, A. M., Bakhtavar, M. A, Hafeez, M. B., Jahanzai, B. and Maqbool M. M. 2019. Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements. Journal of Plant Nutrition, 42(10):192-204.
 DOI: 10.1080/01904167.2019.1609509. (Journal)
Sairam, R. K., Rao, K. V. and Srivastava, G. C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyteconcentration. Plant Science, 163: 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9. (Journal)
Sen, A. and Puthur, J. T. 2020. Influence of different seed priming techniques on oxidative and
antioxidative responses during the germination of Oryza sativa varieties. Physiology and Molecular Biology of Plants, 26(3): 551-565. DOI: 10.1007/s12298-019-00750-9. (Journal)
Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A. and Ahmad, S. 2019. Methods of seed
priming. In: Hasanuzzaman, M. and Fotopoulos, V. (Eds.) Priming and Pretreatment of
Seeds and Seedlings. Singapore. pp: 1–10.
Sivritepe, N., Sivritepe, H. O. and Eris, A. 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline con-ditions. Scientia Horticulturae, 97: 229–237.
DOI: 10.1016/S0304-4238(02)00198-X. (Journal)
Tamindži´c, G., Ignjatov, M., Miljakovi´c, D., Cervenski, J., Miloševi´c, D., Nikoli´c, Z. and Vasiljevi´c, S. 2023. Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea
(Pisum sativum L.). Agriculture, 13: 439. DOI: 10.3390/agriculture13020439. (Journal)
Tao, Q., Lv, Y., Mo, Q., Bai, M., Han, Y. and Wang, Y. 2018. Impacts of priming on seed germination and seedling emergence of Cleistogenes songorica under drought stress. Seed Science and Technology, 46(2): 239-258. DOI: 10.15258/sst.2018.46.2.06. (Journal)
TavakolAfshari, R., Rashidi, S. and Alizadeh, H. 2009. Effects of seed aging on germination characteristics and on catalase and peroxidase activities in two canola cultivars (Brassica napus L.). Iran Journal of Field Crop Science, 40(2): 125-133. DOI: 20.1001.1.20084811.1388.40.2.13.7. (In Persian)(Journal)
Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Rosen, B. D. and Tar'an, B. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31(3): 240-246. DOI: 10.1038/nbt.2491. (Journal)
Yasir, T. A., Muhammad Ateeq, M., Wasaya, A., Hussain, M., Sarwar, N., Khura Mubeen, K., Aziz,
M., Iqbal, M. A., Ogbaga, C., Al-Ashkar, I., Md Atikur, R. and El Sabagh, A. 2023. Seed Priming

 
and Foliar Supplementation with β-aminobutyric Acid Alleviates Drought Stress through Mitigation of Oxidative Stress and Enhancement of Antioxidant Defense in Linseed (Linum usitatissimum L.). Phyton, 92(11): 3114-3131. DOI: 10.32604/phyton.2023.029502. (Journal)
Yasmeen, A., Basra, S., Farooq, M. and Hussain, N. 2013. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions Plant Growth Regulation, 69: 225-233. DOI: 10.1007/s10725-012-9764-5. (Journal)
Zandi, P. and Schnug, E. 2022. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology, 11: 155. DOI: 10.3390/biology11020155. (Journal)
Zulfiqar, F. and Ashraf, M. 2021. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 160: 257–268. DOI: 10.1016/j.plaphy.2021.01.028. (Journal)