Alvarado, V. and Bradford, K. J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment, 25:1061–1069
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. and Monogaki, H. 2013. Seeds: Physiology of Development, Germination and Dormancy. Third Edition, Springer, NY.
Bloomberg, M., Sedcole, J. R., Mason, E. G. and Buchan, G. 2009. Hydrothermal time germination models for radiata pine (Pinus radiata D. Don). Seed Science Research, 19:171–182.
Bradford, K. J. 1990. A water relations analysis of seed germination rates. Plant Physiology, 94: 840–849.
Bradford, K. J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50: 248–260.
Burnham, K. P. and Anderson, D. R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, USA.
Derakhshan, A., Gherekhloo, J. and Paravar, E. 2013. Estimation of cardinal temperatures and thermal time requirement for Cyperus difformis seed germination. Iranian Journal of Weed Science,9: 27-38. (In Persian)
Finch-Savage, W. E. and Leubner-Metzger, G. 2006. Seed dormancy and the control of germination. New Phytologist, 171: 501–523.
Finch-Savage, W. E., Steckel, J. R. A. and Phelps, K. 1998. Germination and post-germination growth to carrot seedling emergence: predictive threshold models and sources of variation between sowing occasions. New Phytologist, 139:505–516.
Ghaderi-Far, F., Soltani, A. and Sadeghipour, H. R. 2009. Evaluation of nonlinear regeression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production,16:1-19. (In Persian)
Gummerson, R. J. 1986. The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37: 729–741.
Kebreab, E. and Murdoch, A. J. 1999. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany, 50:655–664.
Mesgaran, M. B., Mashhadi, H. R., Alizadeh, H., Hunt, J., Young, K. R. and Cousens, R. D. 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53: 89-101.
Michel, B. E. 1983. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiology, 72: 66–70.
SAS. 2009. SAS/STAT 9.2 User’s Guide. SAS Institute, Cary, NC, USA.
Soltani, E., Soltani, A., Galeshi, S., Ghaderi-Far, F. and Zeinali, E. 2013. Seed germination modeling of wild mustard (Sinapis arvensis L.) as affected by temperature and water potential: hydrothermal time model. Journal of Plant Production,20:19-33. (In Persian)
Watt,M. S., Bloomberg, M. and Finch-savage, W. E. 2011. Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell and Environment, 34: 870–876.
Watt,M. S., Xu, V. and Bloomberg, M. 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling, 221:1267–1272.